## О природе полосы поглощения дивакансии 5560 см $^{-1}$ в Si $_{1-x}$ Ge $_x$

© Ю.В. Помозов, М.Г. Соснин, Л.И. Хируненко<sup>¶</sup>, Н.В. Абросимов<sup>+\*</sup>, В. Шрёдер\*

Институт физики Национальной академии наук Украины, 03028 Киев, Украина \*Институт физики твердого тела Российской академии наук, 142432 Черноголовка, Россия \*Институт роста кристаллов,

D-12489 Берлин, Германия

(Получена 17 января 2001 г. Принята к печати 24 января 2001 г.)

Обнаружено, что в монокристаллах  $Si_{1-x}Ge_x$  в процессе облучения быстрыми электронами образуются два типа центров: дивакансии  $V_2$ , характерные для кремния, и  $V_2^*$  — комплексы дивакансий  $V_2$  с атомами германия ( $V_2$ Ge), а полоса поглощения вблизи 5560 см<sup>-1</sup> является суперпозицией двух полос поглощения, соответствующих этим центрам. При изохронном отжиге диффундирующие  $V_2$  взаимодействуют с атомами германия, приводя к дополнительному образованию  $V_2^*$ . Центры  $V_2^*$  более термостабильны, чем  $V_2$ , и температура их отжига повышается с увеличением содержания германия.

Одним из основных радиационных дефектов в кремнии, выращенном как методом бестигельной зонной плавки, так и методом Чохральского, является дивакансия V<sub>2</sub>. Образоваться дивакансия может как первичный радиационный дефект при действии излучения и как вторичный, в результате взаимодействия вакансий при их термически активированной миграции. Свойства дивакансий в кремнии изучены достаточно хорошо. В результате исследований методами электронного парамагнитного резонанса, инфракрасного поглощения, фотопроводимости и емкостной спектроскопии глубоких уровней было установлено, что дивакансия в кремнии может существовать в четырех зарядовых состояниях: V2=, V2-,  $V_2^0, V_2^+$  [1–7]. В инфракрасных (ИК) спектрах поглощения дивакансиям соответствуют три полосы поглощения вблизи 2500, 2760 и 5560 см<sup>-1</sup>, принадлежащие состояниям  $V_2^-$ ,  $V_2^+$  и  $V_2^0$  соответственно. По интенсивности в максимуме полосы вблизи 5560 см<sup>-1</sup> обычно оценивают концентрацию вводимых при облучении дивакансий [8]. Что касается твердых растворов Si<sub>1-r</sub>Ge<sub>r</sub>, то имеется всего несколько работ, посвященных исследованию в них свойств дивакансий. Так, в работе [9] с помощью ИК спектроскопии исследовались дивакансии V<sub>2</sub><sup>0</sup> по полосе поглощения вблизи 5560 см<sup>-1</sup> в поликристаллических образцах  $Si_{1-x}Ge_x$  ( $0 \le x \le 1$ ), облученных нейтронами или протонами. Было обнаружено, что с увеличением содержания германия полоса поглощения смещается в низкочастотную сторону, причем сдвиг, по заключению авторов, коррелирует с изменением постоянной решетки при изменении компонентного состава. Авторы наблюдали также повышение термостабильности дивакансий в кристаллах, обогащенных кремнием, и снижение термостабильности в кристаллах, обогащенных германием. В работах [10,11] при исследовании тонких слоев Si<sub>1-r</sub>Ge<sub>r</sub> показано, что не наблюдается изменения термостабильности дивакансий в зависимости от компонентного состава Si<sub>1-x</sub>Ge<sub>x</sub>, но наблюдается уменьшение энтальпии активации уровня дивакансии  $V_2^+$  относительно валентной зоны при увеличении содержания германия.

Для монокристаллических образцов Si<sub>1-x</sub>Ge<sub>x</sub> свойства дивакансий исследовались в основном при концентрации германия менее 1 ат%. В настоящей работе приведены полученные нами новые данные о природе полосы поглощения дивакансии вблизи 5560 см<sup>-1</sup> в монокристаллических образцах Si<sub>1-x</sub>Ge<sub>x</sub> с содержанием германия до 15 ат%.

Монокристаллы Si<sub>1-x</sub>Ge<sub>x</sub> *p*-типа проводимости (легированные бором) выращивались методом Чохральского в Институте роста кристаллов (Берлин, Германия) [12,13]. Концентрации кислорода и углерода определялись по интенсивности полос инфракрасного поглощения на длинах волн 9 и 16 мкм и составляли  $(7-9) \cdot 10^{17}$  и  $(2-3) \cdot 10^{16}$  см<sup>-3</sup> соответственно. Содержание германия в образцах определялось с помощью рентгеновского микроанализатора JCXA-733 и изменялось от 0.8 до 15 ат%. Для выявления особенностей влияния германия на свойства дивакансий исследовались контрольные кристаллы кремния, не содержащие германия и близкие по параметрам к твердым растворам Si<sub>1-x</sub>Ge<sub>x</sub>.

Образцы облучались быстрыми электронами с энергией 4 МэВ при температурах  $T_{\rm irr} \approx 300$  и 90 К. Доза облучения составляла  $(3.5-6) \cdot 10^{17}$  см<sup>-2</sup>. Проводился изохронный (20 мин) отжиг облученных образцов в интервале температур  $T_{\rm ann} = 100-400^{\circ}$ С. С помощью инфракрасной фурье-спектроскопии исследовались процессы образования и отжига дивакансий  $V_2^0$  (по полосе поглощения 5560 см<sup>-1</sup>) и их зависимость от содержания германия в Si<sub>1-x</sub>Ge<sub>x</sub>.

Полученные спектры коэффициента поглощения ( $\alpha$ ) для образцов, облученных при температуре  $T_{\rm irr} \approx 300 \, {\rm K}$  дозой 5 · 10<sup>17</sup> см<sup>-2</sup>, приведены на рис. 1. Как видно, с увеличением содержания германия в образцах наблюдается постепенный сдвиг полосы поглощения  $V_2^0$  в сторону низких частот. Зависимость величины смещения полосы поглощения  $V_2^0$  (изменения энергии  $\Delta E$ ) от содержания германия в образцах приведена на рис. 2. Здесь же

<sup>¶</sup> E-mail: lukh@iop.kiev.ua

Fax: (44) 265 55 88





**Рис. 1.** Спектры поглощения в области 5560 см<sup>-1</sup> для образцов Si<sub>1-x</sub>Ge<sub>x</sub>, облученных электронами дозой  $5 \cdot 10^{17}$  см<sup>-2</sup>. N<sub>Ge</sub>, ат%: I = 0, 2 = 3.5, 3 = 8.5, 4 = 11.5, 5 = 15.



**Рис. 2.** Зависимости изменения  $E_g$  (1) [14] и величины смещения полосы поглощения  $V_2^0$  (2) от содержания германия в Si<sub>1-x</sub>Ge<sub>x</sub>.

для сравнения приведена аналогичная зависимость для изменения ширины запрещенной зоны  $E_g$  ( $\Delta E_g$ ) согласно [14]. Из сравнения видно, что зависимость для сдвига полосы поглощения не совпадает с зависимостью для изменения  $E_g$  в противоположность тому, что сообщалось в работе [9]. При концентрациях германия N<sub>Ge</sub>  $\leq 1.7$  ат% величина сдвига полосы  $V_2^0$  близка к изменению  $E_g$ , а при более высоких концентрациях сдвиг полосы  $V_2^0$ намного превышает изменение  $E_g$ . Оценки концентраций дивакансий по интенсивности полосы поглощения вблизи 5560 см<sup>-1</sup> показали, что не наблюдается заметного влияния германия в области исследуемых концентраций на эффективность введения дивакансий, в то время как ранее нами наблюдалось снижение эффективности введения A-центров в этих кристаллах [15].

Интересные особенности поведения полосы поглощения, соответствующей V<sub>2</sub><sup>0</sup>, были обнаружены при изохронном отжиге образцов. На рис. 3 приведены экспериментальные данные для кристаллов с содержанием германия 3.5 ат%. В области температур  $T_{ann} = 150 - 240^{\circ} \text{C}$ происходит изменение высокочастотного крыла полосы поглощения, максимум полосы постепенно сдвигается в сторону низких частот и наблюдается некоторое увеличение ее интенсивности (рис. 3, кривая  $3 - V_2^*$ ). Все эти изменения происходят в пределах исходной полосы поглощения. Такие изменения характерны для всех исследуемых в работе концентраций германия и происходят они в области одних и тех же температур отжига независимо от содержания германия. В контрольных образцах кремния в области температур  $T_{\rm ann} = 150{-}240^{\circ}{\rm C}$  наблюдается отжиг значительной части дивакансий (рис. 4, кривая 1), сопровождающийся дополнительным образованием центров вакансия-кислород (А-центров). Для всех исследуемых кристаллов Si<sub>1-x</sub>Ge<sub>x</sub> отжиг в этом температурном интервале не приводит к каким-либо



Рис. 3. Полоса поглощения вблизи 5560 см<sup>-1</sup> до отжига (1) и ее поведение при отжиге образцов Si<sub>0.065</sub>Ge<sub>0.035</sub> (2–7).  $T_{ann}$ , °C: 2 — 180, 3 — 240, 4 — 310, 5 — 320, 6 — 330, 7 — 335.



**Рис. 4.** Относительное изменение интенсивности  $(I/I_0)$  полос поглощения  $V_2^0$  в Si (1) и  $V_2^*$  в Si<sub>1-x</sub>Ge<sub>x</sub> (2-5) при отжиге.  $N_{\text{Ge}}$ , ат%: 2 — 3.5, 3 — 6.5, 4 — 8.5, 5 — 11.5.

Физика и техника полупроводников, 2001, том 35, вып. 8

изменениям в области поглощения, соответствующего *А*-центрам.

При дальнейшем повышении температуры отжига интенсивность образовавшейся в результате отжига при  $T_{\rm ann} = 150 - 240^{\circ}{
m C}$  полосы  $V_2^*$  остается вначале неизменной и затем полоса начинает постепенно уменьшаться как целое, сохраняя свое положение. Результаты отжига — поведение полосы V<sub>2</sub><sup>\*</sup> (интенсивность в максимуме) — для исследуемых образцов приведены на рис. 4. Как видно из рис. 4 температура исчезновения полосы V<sub>2</sub><sup>\*</sup> выше температуры исчезновения полосы дивакансии 5560 см<sup>-1</sup> в кремнии и повышается с увеличением содержания германия в образцах. Это не согласуется с результатами, полученными в работах [10,11] при исследовании тонких слоев Si<sub>1-x</sub>Ge<sub>x</sub> методом емкостной спектроскопии глубоких уровней. Авторами этих работ было показано, что не наблюдается изменения термостабильности дивакансий в зависимости от компонентного состава образцов.

Известно, что дивакансии в кремнии отжигаются вследствие их диффузии по решетке, пока они не будут захвачены ловушкой (стоком); при этом они могут диффундировать на большие расстояния по решетке кремния без диссоциации [1]. Энергия активации диффузии дивакансии  $\sim 1.25$  эВ, в то время как энергия ее диссоциации выше 1.6 эВ.  $V_2$  эффективно взаимодействуют с примесями I с образованием комплексов  $V_2 + I$  (например, эффективно образуются комплексы  $V_2O$ ,  $V_2O_2$ ,  $HV_2$ , Sn $V_2$ , Sn $V_2$ , и т.д.) [16–20].

Наблюдаемые нами особенности поведения полосы поглощения вблизи 5560 см<sup>-1</sup> в образцах  $Si_{1-x}Ge_x$  при отжиге в интервале температур  $T_{\rm ann} = 150 - 240^{\circ} {\rm C}$  изменение высокочастотного крыла полосы поглощения, сдвиг максимума полосы, увеличением ее интенсивности, отсутствие стадии "отрицательного отжига" А-центров — позволяют сделать предположение, что в кристаллах  $Si_{1-x}Ge_x$  в этом интервале температур при термически активированной диффузии V<sub>2</sub> происходит их взаимодействие с примесями (ловушками) и при этом  $V_2$  трансформируется в другие комплексы  $V_2^*$ . Учитывая, что содержание германия в исследуемых образцах намного превышает концентрации всех возможных стоков в образцах, и именно этим они отличаются от контрольного кремния, логично сделать предположение, что при отжиге происходит взаимодействие диффундирующих дивакансий с атомами Ge с образованием центров  $V_2$ Ge, которым и соответствует полоса  $V_2^*$ .

Для подтверждения сделанного предположения о сложной структуре полосы поглощения вблизи 5560 см<sup>-1</sup> в Si<sub>1-x</sub>Ge<sub>x</sub> были проведены исследования образцов, облученных при температурах  $T_{\rm irr} \leq 90$  К. Как известно, при этой температуре облучения идет эффективное образование центров GeV и практически все вакансии захватываются атомами германия, что сказывается на эффективностях введения вторичных вакансионных дефектов [21,22]. На рис. 5 приведены спектры поглощения, снятые при T = 4.2 К для Si и для

**Рис. 5.** Спектры поглощения Si (1) и Si<sub>0.065</sub>Ge<sub>0.035</sub> (2), облученных при  $T_{\rm irr} \leq 90$  К электронами дозой  $6 \cdot 10^{17}$  см<sup>-2</sup>.

образца с содержанием германия 3.5 ат%, облученных дозой 6 · 10<sup>17</sup> см<sup>-2</sup> при  $T_{\rm irr} \leq 90$  К. Как видно, сразу после облучения в спектре поглощения Si<sub>0.065</sub>Ge<sub>0.035</sub> не наблюдается полосы поглощения  $\sim 835 \, {\rm cm}^{-1}$ . соответствующей А-центрам. Однако не наблюдается заметного влияния германия на полосу поглощения дивакансий вблизи 5560 см<sup>-1</sup> и, соответственно, концентрацию дивакансий, определенную на по интенсивности этой полосы. Хотя, как известно, эффективность образования вторичных V<sub>2</sub> вследствие взаимодействия вакансии с вакансией при используемых нами энергиях и дозах облучения в материале, полученном по методу Чохральского, должна быть ниже чем А-центров, а эффективность образования центров GeV, учитывая высокую концентрацию германия, намного превышает эффективности введения вторичных и А-, и V<sub>2</sub>-центров [6,21] и, следовательно, должно наблюдаться влияние германия на образование дивакансий.

Для более детального выяснения влияния содержания германия на образование дивакансий в Si<sub>1-x</sub>Ge<sub>x</sub> нами исследовалось также зарядовое состояние дивакансии  $V_2^+$ , которому в спектре соответствует полоса поглощения вблизи  $2760 \,\mathrm{cm}^{-1}$  и ее фононное повторение, наблюдаемое со стороны высоких энергий от полосы. Как видно из рис. 5, полоса поглощения вблизи 2760 см<sup>-1</sup> в Si<sub>0.065</sub>Ge<sub>0.035</sub> сдвигается в сторону низких частот по сравнению с Si на  $\sim 20\,{
m cm}^{-1}$  (против  $\sim 100\,{
m cm}^{-1}$  для полосы в области 5560 см<sup>-1</sup>) и уменьшается по интенсивности. Сравнение площадей под полосами V<sub>2</sub><sup>+</sup> показывает, что происходит уменьшение концентрации дивакансий в Si<sub>0.065</sub>Ge<sub>0.035</sub> по сравнению с Si, что, как отмечалось выше, и должно наблюдаться в условиях низкотемпературного облучения. Проведенный изохронный отжиг образцов показал, что отжиг центров, которым соответствует полоса поглощения  $V_2^+$ , в Si<sub>0.065</sub>Ge<sub>0.035</sub> проходит аналогично отжигу дивакансий в кремнии и полоса исчезает в интервале температур  $T_{\rm ann} = 180 - 260^{\circ}$ С, что согласуется с результатами, полученными в [10,11]. Все



эти факты свидетельствуют в пользу сделанного нами предположения о сложной природе полосы поглощения вблизи 5560 см<sup>-1</sup>.

Как видно из рис. З и как показывают результаты разложения полос поглощения вблизи 5560 см<sup>-1</sup> на составляющие, наблюдаемая в спектре сразу после облучения Si<sub>1-x</sub>Ge<sub>x</sub> полоса во всех исследуемых образцах является суперпозицией двух полос: одна соответствует дивакансиям  $V_2^0$ , другая — обнаруженным центрам  $V_2^*$ , причем вклад от  $V_2^*$  в полосу поглощения увеличивается с увеличением содержания германия. Таким образом, образование  $V_2^*$  происходит и в процессе облучения. Так как атомы германия являются эффективными стоками для вакансий, то, очевидно, при облучении устремляющиеся к атомам германия вакансии ассоциируются с ними в комплексы  $V_2$ Ge.

Таким образом, образование центров  $V_2^*$  может происходить в результате двух реакций: первой — во время облучения,

$$Ge + V + V \Rightarrow V_2Ge,$$
 (1)

и второй, термически стимулированной реакции

$$V_2 + \mathrm{Ge} \Rightarrow V_2 \mathrm{Ge}.$$
 (2)

С учетом сложной структуры полосы поглощения дивакансии вблизи 5560 см<sup>-1</sup> наблюдаемый в эксперименте сразу после облучения сдвиг полосы в Si<sub>1-x</sub>Ge<sub>x</sub> по сравнению с Si можно, очевидно, объяснить наложением двух факторов — сдвигом, связанным с изменением ширины запрещенной зоны с составом, и вкладом от полосы поглощения, соответствующей  $V_2^*$ . С увеличением содержания германия вклад в полосу поглощения от  $V_2^*$  увеличивается, чем и объясняется, вероятно, отклонение зависимости величины сдвига полосы от аналогичной зависимости для изменения  $E_g$ .

Таким образом, полученные в работе экспериментальные данные позволяют сделать вывод, что в монокристаллах  $Si_{1-x}Ge_x$  при облучении образуются  $V_2$ , характерные для кремния, и комплексы  $V_2$  с атомами германия —  $V_2Ge$ , а полоса поглощения вблизи 5560 см<sup>-1</sup> является суперпозицией двух полос поглощения, соответствующих поглощению этими двумя центрами. Отсутствие влияния германия на накопление дивакансий, оцененное по полосе поглощения вблизи 5560 см<sup>-1</sup>, объясняется тем фактом, что мы в нашем эксперименте измеряем суммарную концентрацию дивакансий и обнаружных центров  $V_2^*$ . Таким образом, интенсивность в максимуме полосы поглощения в области 5560 см<sup>-1</sup> в твердых растворах  $Si_{1-x}Ge_x$  не может быть использована для оценки концентрации вводимых при облучении дивакансий.

Следует подчеркнуть, что все описанные выше особенности спектров поглощения в области дивакансий проявляются при высоких концентрациях германия. Это означает, что при исследовании процессов дефектообразования в  $Si_{1-x}Ge_x$ , по всей вероятности, необходимо различать область низких и высоких концентраций германия в кремнии. Влияние германия на процессы образования вторичных радиационных дефектов в кремнии в области низких концентраций германия (< 1 ат%), когда атом германия можно рассматривать как обычную изовалентную примесь, будет преимущественно определяться полями упругих напряжений, создаваемых атомами германия в кремнии. Этим, очевидно, и объясняется наблюдавшееся ранее снижение эффективности введения всех вторичных радиационных дефектов [22], и это подобно тому, что наблюдается, например, для примеси олова в кремнии [23,24]. В области высоких концентраций германия происходит изменение энергетической структуры, изменяются вероятности взаимодействий дефектов и сечения их образования — этим и будут определяться процессы образования радиационных дефектов.

## Список литературы

- [1] G.D. Watkins, J.W. Corbett. Phys. Rev., **138**, A543 (1965).
- [2] J.W. Corbett, G.D. Watkins. Phys. Rev., **138**, A555 (1965).
- [3] R.C. Young, J.C. Corelli. Phys. Rev. B, 5, 1455 (1972).
- [4] L.J. Cheng, J.C. Corelli, J.W. Corbett, G.D. Watkins. Phys. Rev., 152, 761 (1966).
- [5] B.G. Svensson, M. Willander. J. Appl. Phys., 62, 2758 (1987).
- [6] Л.С. Смирнов. Вопросы радиационной технологии полупроводников (Новосибирск, Наука, 1980) с. 20.
- [7] В.В. Емцев, Т.В. Машовец. Примеси и точечные дефекты в полупроводниках (М., Радио и связь, 1981) с. 42.
- [8] L.J. Cheng, J. Lori. Phys. Rev., 171, 856 (1968).
- [9] H.J. Stein. J. Appl. Phys., 45, 1954 (1974).
- [10] E.V. Monakov, A.N. Larsen, P. Kringhf. J. Appl. Phys., 81, 1180 (1996).
- [11] A.N. Larsen. Sol. St. Phenom., 69–70, 43 (1999).
- [12] N.V. Abrosimov, S.N. Rossolenko, V. Alex, A. Gerhardt, W. Schröder, J. Cryst. Growth, 166, 657 (1996).
- [13] N.V. Abrosimov, S.N. Rossolenko, W. Thieme, A. Gerhardt, W. Schröder. J. Cryst. Growth, 174, 182 (1997).
- [14] E.R. Johnson, S.M. Christian. Phys. Rev., 95, 560 (1954).
- [15] Ю.В. Помозов, М.Г. Соснин, Л.И. Хируненко, В.И. Яшник, Н.В. Абросимов, В. Шрёдер, М. Нёне. ФТП, 34, 1030 (2000).
- [16] Y.H. Lee, J.C. Corelli, J.W. Corbett. Phys. Lett., 60 A, 55 (1977).
- [17] J. Lennart Lindström, Bengt G. Svensson. Mater. Res. Soc. Symp. Proc., 59, 45 (1986).
- [18] G. Davies, E.C. Lightowlers, R.C. Newman, A.S. Oates. Semicond. Sci. Technol., 2, 524 (1987).
- P. Stallinga, P. Johannesen, S. Herstrom, K. Bonde Nielsen, B. Bech Nielsen, J.R. Byberg. Phys. Rev. B, 58, 3842 (1998).
- [20] M. Fanciulli, J.R. Byberg. Phys. Rev. B, 61, 2657 (2000).
- [21] A. Brelot, J. Charlemagne. Proc. Int. Conf. Rad. Effects in Semicond. (London–N.Y.–Paris, 1971) p. 161.
- [22] Л.И. Хируненко, В.И. Шаховцов, В.К. Шинкаренко, Л.И. Шпинар, И.И. Ясковец. ФТП, 21, 562 (1987).
- [23] М.Г. Соснин, В.И. Шаховцов, В.Л. Шиндич. ФТП, 15, 786 (1981).
- [24] B.G. Svensson, J. Svensson, J.L. Lindström, G. Davies, J.W. Corbett. Appl. Phys. Lett., 51, 2257 (1987).

## Редактор Л.В. Шаронова

## On the nature of the 5560 cm<sup>-1</sup> divacancy absorption band in $Si_{1-x}Ge_x$

L.I. Khirunenko, Yu.V. Pomozov, M.G. Sosnin, N.V. Abrosimov<sup>+\*</sup>, W. Schröder<sup>\*</sup>

Institute of Physics, National Academy of Sciences of Ukraine, 03039 Kiev, Ukraine, \*Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia +Institute of Crystal Growth, D-12489 Berlin, Germany

**Abstract** It has been shown that in  $Si_{1-x}Ge_x$  single crystals two type centers are formed during irradiation: divacancies  $V_2$ , that are characteristic of silicon, and  $V_2^*$ , which are complexes of  $V_2$  with Ge atoms ( $V_2$ Ge). As a result, the absorption band near 5560 cm<sup>-1</sup> is a superposition of two absorption bands corresponding to these centres. During an isothermal annealing, an interaction of the diffusing  $V_2$  with Ge atoms takes place and the additional formation of the  $V_2^*$  is observed. The  $V_2^*$  centres are more thermally stable than the  $V_2$  ones and their annealing temperature rises with the increase in the Ge content.