Функция распределения горячих носителей заряда при резонансном рассеянии

© А.А. Прокофьев^{+,*}, М.А. Одноблюдов^{+,*}, И.Н. Яссиевич^{+,*}

 * Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия
 * Division of Solid State Theory, Department of Physics, Lund University, SE-223 62 Lund, Sweden

(Получена 8 ноября 2000 г. Принята к печати 15 ноября 2000 г.)

Предлагается простой аналитический метод решения кинетического уравнения для носителей заряда в присутствии резонансных состояний в условиях стримминга. На примере изотропной модели резонансного рассеяния Брейта–Вигнера проанализировано анизотропное распределение носителей заряда по энергии, возникающее под влиянием внешнего электрического поля для двумерных и трехмерных носителей, а также заселенность резонансного состояния. Обсуждается вопрос об условиях возникновения внутрицентровой инверсной заселенности.

1. Введение

На основе одноосно-деформированного германия, в котором мелкие акцепторы приводят к появлению резонансных состояний, был создан терагерцовый лазер, работающий на оптических переходах между резонансным и локальным состояниями одной и той же примеси(см. [1,2] и ссылки в этих работах). Возникновение нового типа инверсной заселенности, наводимой резонансными состояниями в полупроводниках, рассматривалось в работе [3] на основе численного решения кинетического уравнения в условиях стриммингового режима. Детальное теоретическое исследование резонансных состояний, наводимых мелкими акцепторами в одноосно-деформированных полупроводниках, представлено в работе [4].

В настоящей работе предлагается простой аналитический метод решения кинетического уравнения для носителей заряда в присутствии резонансных состояний в условиях стриммингового режима. На примере изотропной модели резонансного рассеяния Брейта–Вигнера проанализировано анизотропное распределение носителей заряда по энергии, возникающее под влиянием внешнего электрического поля для двумерных и трехмерных носителей, а также заселенность резонансного состояния. Обсуждается вопрос об условиях возникновения внутрицентровой инверсной заселенности.

2. Стримминговый режим

Рассмотрим простую модель, в которой мы ограничимся только учетом резонансного рассеяния носителей на примесях и их взаимодействия с оптическими фононами.

При отсутствии резонансного рассеяния реализуется так называемый стримминговый режим [5,6]. Такой режим имеет место при полях $F \ge \hbar \omega_o/el$, где l - длина свободного пробега по отношению к другим механизмам рассеяния. Носители заряда в присутствии электрического поля **F**, приложенного вдоль оси *z*, разгоняются

и движутся в *k*-пространстве, пока их кинетическая энергия не превысит энергии оптического фонона $\hbar\omega_o$. Носители, достигшие энегии $\hbar\omega_o$, получают возможность испустить оптический фонон, после чего они возвращаются в область малых кинетических энергий $\varepsilon_{\mathbf{k}} \leq \epsilon_0$.

Кинетическое уравнение Больцмана для функции распределения носителей $f_{\mathbf{k}}$ по волновому вектору **k** имеет следующий вид:

$$\frac{\partial f_{\mathbf{k}}}{\partial t} + \frac{eF}{\hbar} \frac{\partial f_{\mathbf{k}}}{\partial k_z} = S - D, \qquad (1)$$

где $S(\varepsilon_{\mathbf{k}})$ — источник носителей, отличный от нуля при $\varepsilon_{\mathbf{k}} \leq \epsilon_0$, а *D* учитывает сток носителей при $\varepsilon_{\mathbf{k}} = \hbar \omega_o$. Простейшим образом сток можно учесть введением граничного условия

$$f_{\mathbf{k}} = 0 \tag{2}$$

при $\varepsilon_{\mathbf{k}} = \hbar \omega_o$.

Зависимость $S(\varepsilon_{\mathbf{k}})$ определяется из условия, что приход частиц в область малых кинетических энергий $\varepsilon_{\mathbf{k}} \leq \epsilon_0$ определяется испусканием оптических фононов за счет деформационного взаимодействия. При этом для простоты мы будем считать источник изотропным и принимать во внимание условие баланса потоков: полный поток в область $\varepsilon_{\mathbf{k}} \leq \epsilon_0$ равен потоку через поверхность $\varepsilon_{\mathbf{k}} = \hbar \omega_o$:

$$J(\hbar\omega_o) \equiv \int S(\varepsilon_{\mathbf{k}}) d^3 \mathbf{k} = \frac{e}{\hbar} \int f_{\mathbf{k}} (\mathbf{F} \cdot \mathbf{dS}) \big|_{\varepsilon_{\mathbf{k}} = \hbar\omega_o}.$$
 (3)

Учет резонансного рассеяния производится внесением интеграла столкновений *I* в правую часть уравнения (1):

$$I = \sum_{\mathbf{k}} N_i W_{\mathbf{k}\mathbf{k}'} (f_{\mathbf{k}'} - f_{\mathbf{k}}), \qquad (4)$$

где N_i — число примесных центров, а вероятность рассеяния $W_{\mathbf{kk}'}$ определяется формулой

$$W_{\mathbf{k}\mathbf{k}'} = \frac{2\pi}{\hbar} |t_{\mathbf{k}\mathbf{k}'}|^2 \delta(\varepsilon_{\mathbf{k}'} - \varepsilon_{\mathbf{k}}), \qquad (5)$$

*t*_{**kk**'} — амплитуда резонансного рассеяния.

Мы рассмотрим предельный случай, когда ширина резонансного уровня $\Gamma/2 \ll E_0$, где E_0 — энергетическое положение резонансного уровня. В этом случае процессы захвата-выброса в резонансное состояние и соответственно резонансного рассеяния происходят в узкой энергетической области и их можно рассматривать как идущие при фиксированной энергии E_0 .

Таким образом, в интервале энергий $\epsilon_0 < \varepsilon_{\mathbf{k}} < \hbar \omega_o$ мы имеем свободное движение под влиянием электрического поля и резонансное упругое рассеяние при энергии $\varepsilon_{\mathbf{k}} = E_0$, где E_0 — энергия резонансного уровня. Далее мы будем интересоваться заселенностью резонансного состояния, которая определяется соотношением

$$f_r = \sum_{\mathbf{k}} W_{\mathbf{k}} f_{\mathbf{k}},\tag{6}$$

где $W_{\mathbf{k}}$ — полная вероятность захвата свободного носителя с волновым вектором \mathbf{k} на резонансное состояние [3,4].

Условие нормировки функции распределения определяется уравнением

$$n = n_i f_r + \sum_{\mathbf{k}} f_{\mathbf{k}},\tag{7}$$

где *n* — полная концентрация носителей, *n_i* — концентрация примеси (мы не учитываем наличие спина у носителей).

3. Простая изотропная модель резонансного рассеяния

Построим стационарное решение уравнения (1) для изотропного рассеяния. В таком случае как упругое резонансное рассеяние, так и вероятность захвата свободных носителей на резонансное состояние характеризуются только двумя параметрами: E_0 и Γ и зависят только от модуля волнового вектора частицы (модель Брейта–Вигнера, см., например, [7]).

Вероятность захвата $W_{\mathbf{k}}$ и амплитуда упругого резонансного рассеяния $t_{\mathbf{kk}'}$ определяются формулами

$$W_{\mathbf{k}} = \frac{1}{V} \frac{\pi \Gamma \hbar^2}{km} \frac{1}{(\varepsilon_{\mathbf{k}} - E_0)^2 + \Gamma^2/4},$$
 (8)

$$|t_{\mathbf{k}\mathbf{k}'}|^2 = \frac{1}{V^2} \frac{\pi^2 \hbar^4 \Gamma^2}{m^2 k^2} \frac{1}{(\varepsilon_{\mathbf{k}} - E_0)^2 + \Gamma^2/4},$$
 (9)

где V — нормировочный объем, а *m* — масса частицы. Эти выражения можно получить, следуя работам [3,4].

Вводя сечение резонансного рассеяния

$$\sigma_r(k) = \frac{\pi}{k_0^2} \frac{\Gamma^2}{(\varepsilon_{\mathbf{k}} - E_0)^2 + \Gamma^4/4},$$
 (10)

Физика и техника полупроводников, 2001, том 35, вып. 5

можно привести интеграл столкновений *I* к следующему виду:

$$n_i \sigma_r(k) \upsilon_k \frac{1}{2} \int_{-1}^{+1} d\eta' [f(\eta', \varepsilon_{\mathbf{k}}) - f(\eta, \varepsilon_{\mathbf{k}})], \qquad (11)$$

где $v_k = \sqrt{2\varepsilon_{\mathbf{k}}/m}$ — скорость частицы, а также введен параметр $\eta = k_z/k$.

В приближении $\Gamma \ll E_0$ резонансное рассеяние имеет место только для носителей с волновым вектором $k_0 = \sqrt{2mE_0/\hbar^2}$:

$$\sigma_r(k) = \frac{2\pi^2\Gamma}{k_0^2}\delta(\varepsilon_k - E_0).$$
(12)

Так как импульс в направлении, перпендикулярном полю, сохраняется, удобно в дальнейшем ввести безразмерные переменные: $y = \varepsilon_{\mathbf{k}}/E_0$ для полной энергии и $y_{\perp} = \varepsilon_{\perp}/E_0$ для энергии перпендикулярного движения, где $\varepsilon_{\perp} = \hbar^2 k_{\perp}^2/2m$, а $k_{\perp}^2 = k^2 - k_z^2$. Также удобно ввести две функции: $f_1(\mathbf{k})$, заданную в области $k_z > 0$, и $f_2(\mathbf{k})$, заданную в области $k_z < 0$.

В изотропной модели зависимость источника носителей от энергии, согласно [5], имеет вид

$$S = S_0 \sqrt{\frac{\varepsilon_{\mathbf{k}}}{\hbar \omega_o}} \left[1 - \left(\frac{\varepsilon_k}{\epsilon_0}\right)^{3/2} \right] \Theta(\epsilon_0 - \varepsilon_{\mathbf{k}}), \qquad (13)$$

где константу S_0 удобно определять из условия балланса потоков (3), а характерный параметр ϵ_0 , согласно работам [5,6], определяется следующей формулой

$$\epsilon_0 = \left(\frac{9}{2m_z}\right)^{1/3} \left(\frac{\omega_o}{\upsilon_A} eF\hbar\right)^{2/3},\tag{14}$$

где v_A — параметр, характеризующий скорость испускания оптических фононов $v_A \sqrt{\varepsilon_k/\hbar\omega_o - 1}$ носителями с энергией $\varepsilon_k > \hbar\omega_o$. При вычислении ϵ_0 следует использовать то значение эффективной массы m_z , которое имеет частица с энергией, близкой к энергии оптического фонона.

В переменных y, y_{\perp} уравнение (1) с учетом соотношения (13) и столкновительного члена принимает вид

$$\frac{\partial f_{1,2}(y,y_{\perp})}{\partial y} = \pm A \frac{\delta(y-1)}{\sqrt{1-y_{\perp}}} \left[B - f_{1,2}(y,y_{\perp}) \right]$$
$$\pm C \frac{\sqrt{y}}{\sqrt{y-y_{\perp}}} \left[1 - \left(\frac{y}{y_0}\right)^{3/2} \right] \Theta(y_0 - y), \quad (15)$$

где $y_0 = \epsilon_0/E_0$, параметры A и C определяются соотношениями

$$A = \frac{2\pi^2 n_i \Gamma}{eFk_0^2},\tag{16}$$

$$C = \frac{S_0}{eF} \sqrt{\frac{mE_0}{\hbar}},\tag{17}$$

Рис. 1. Области движения носителей в **k**-пространстве: $k_{00} = \sqrt{2m\epsilon_0}/\hbar$ ограничивает размер источника; $k_0 = \sqrt{2mE_0}/\hbar$ — линия резонансного рассеяния; $k_1 = \sqrt{2m\hbar\omega_o}/\hbar$, $\hbar\omega_o$ — энергия оптического фонона; 1 — область определения функции f_1 , 2 — область определения функции f_2 .

а параметр *B* связан со значением функции распределения при y = 1:

$$B = \frac{1}{4} \int_0^1 \frac{f_1(1, y_\perp) + f_2(2, y_\perp)}{\sqrt{1 - y_\perp}} \, dy_\perp.$$
(18)

В выражении (15) знак плюс относится к функции f_1 , а минус — к f_2 (см. рис. 1).

Граничные условия (2), накладываемые на функции распределения, перепишутся следующим образом:

$$f_1(y_1, y_\perp) = f_2(y_1, y_\perp) = 0,$$
 (19)

где $y_1 = \hbar \omega_o / E_0$.

Отметим, что, как следует из формул (6), (8) при $\Gamma \ll E_0$, именно величина *B* определяет заселенность резонансного состояния f_r :

$$f_r = B. \tag{20}$$

На рис. 1 изображены области определения функций f_1 и f_2 в **k**-пространстве. Области 1, 1a ($k_z > 0$) соответствуют ускорению носителей электрическим полем, а области 2, 2a ($k_z < 0$) — торможению. Носители испытывают сильное упругое рассеяние на поверхности $k = k_0$. Вне источника частицы в области 2 появляются только в результате рассеяния. Носители в области 2a вообще отсутствуют. Все носители, прошедшие в область 1a, после набора энергии, превыщающей $\hbar\omega_o$, испускают оптический фонон и возвращаются в область источника $\varepsilon_{\mathbf{k}} < \epsilon_0$.

Так как источник отличен от нуля только в области малых энергий $y < y_0$, построим сначала решение для интервала $y_0 < y < y_1$. При $y_0 < y < 1$ функции f_1 и f_2 не зависят от y и мы имеем

$$f_{1,2}(y, y_{\perp}) = C_{1,2}(y_{\perp}).$$
 (21)

Решение уравнения (15) при y > 1 дает

$$f_{1,2}(y, y_{\perp}) = C_{1,2}(y_{\perp}) \exp\left(\mp A/\sqrt{1-y_{\perp}}\right) + B\left[1 - \exp\left(\pm A/\sqrt{1-y_{\perp}}\right)\right]. \quad (22)$$

Условие отсутствия частиц в области 2a (см. рис. 1), т. е. равенство $f_2 = 0$ при y > 1, дает выражение для C_2 :

$$C_2(y_{\perp}) = B\left[1 - \exp\left(-A/\sqrt{1 - y_{\perp}}\right)\right].$$
(23)

Поток частиц в **k**-пространстве через поверхность постоянной энергии ε определяется следующим выражением

$$J(\varepsilon) = \frac{1}{(2\pi)^3} \int \frac{e}{\hbar} f_{\mathbf{k}} \ (\mathbf{F} \cdot \mathbf{dS}).$$
(24)

Здесь имеется в виду поток на единицу объема реального пространства. Переписывая интеграл (24) в переменных y, y_{\perp} , получаем

$$J(y) = f \int_0^y [f_1(y, y_\perp) - f_2(y, y_\perp)] dy_\perp, \qquad (25)$$

где

$$b = \frac{eFk_0^2}{8\pi^2\hbar}.$$
 (26)

Так как источник действует только при $y < y_0$, то при $y_0 < y < 1$ поток J постоянен, а с другой стороны, в этой области f_1 и f_2 зависят только от y_{\perp} (см. уравнение (21)). Тогда мы имеем $C_1(y_{\perp}) = C_2(y_{\perp})$ при $y_{\perp} > y_0$ и можем представить C_1 виде

$$C_1(y_\perp) = C_2(y_\perp) + \varphi(y_\perp), \qquad (27)$$

где функция $\varphi(y_{\perp})$ отлична от нуля только при $y_1 < y_0$ и определяется потоком из источника в область $y > y_0$:

$$J(y_0) = b \int_0^{y_0} \varphi(y_\perp) dy_\perp.$$
 (28)

Используя φ , с учетом формул (21)–(23) можно записать функции распределения в интервале $y_0 < y < 1$ в виде

$$f_1(y, y_\perp) = \varphi(y_\perp) + B\left[1 - \exp\left(-A/\sqrt{1 - y_\perp}\right)\right], \quad (29)$$

$$f_2(y, y_\perp) = B\left[1 - \exp\left(-A/\sqrt{1 - y_\perp}\right)\right], \qquad (30)$$

а в интервале 1 < у < у₁ — в виде

$$f_1(y, y_\perp) = \varphi(y_\perp) \exp\left(-A/\sqrt{1-y_\perp}\right) + B\left[1 - \exp\left(-2A/\sqrt{1-y_\perp}\right)\right], \quad (31)$$

$$f_2(y, y_\perp) = 0.$$
 (32)

Рассмотрим теперь функцию распределения носителей в области $y < y_0$, где уравнение (1) имеет вид

$$\frac{\partial f_{1,2}}{\partial y} = \pm C \frac{\sqrt{y}}{\sqrt{y - y_{\perp}}} \left[1 - \left(\frac{y}{y_0}\right)^{3/2} \right], \qquad (33)$$

а С определяется формулой (17). Тогда

$$\frac{\partial(f_1 - f_2)}{\partial y} = 2C \frac{\sqrt{y}}{\sqrt{y - y_\perp}} \left[1 - \left(\frac{y}{y_0}\right)^{3/2} \right].$$
(34)

Физика и техника полупроводников, 2001, том 35, вып. 5

При интегрировании уравнения (34) в качестве граничного условия используем равенство

$$[f_1(y, y_{\perp}) - f_2(y, y_{\perp})]|_{y=y_{\perp}} = 0.$$

В результате получаем

$$f_1(y, y_\perp) - f_2(y, y_\perp) = 2CM(y, y_\perp),$$
 (35)

где

$$M(y, y_{\perp}) = \sqrt{y(y - y_{\perp})} - \sqrt{y_0(y - y_{\perp})} \\ \times \left(\frac{2}{5}\frac{y_1^2}{y_0^2} + \frac{8}{15}\frac{yy_{\perp}}{y_0^2} + \frac{16}{15}\frac{y_{\perp}^2}{y_0^2}\right) \\ + \frac{y_{\perp}}{2}\ln^2\left(\frac{\sqrt{y(y - y_{\perp})} + 2y - y_{\perp}}{y_{\perp}}\right).$$
(36)

С другой стороны,

$$f_1(y_0 + 0, y_\perp) - f_2(y_0 + 0, y_\perp) = \varphi(y_\perp),$$

откуда из условия непрерывности функции распределения при $y = y_0$ следует, что

$$\varphi(y_{\perp}) = 2CM(y_0, y_{\perp})\Theta(y_0 - y_{\perp}). \tag{37}$$

Используя (25) и приравнивая потоки при y < 1 и y > 1, мы имеем равенство

$$\int_{0}^{y_{0}} \varphi(y_{\perp}) \left[1 - \exp\left(-A/\sqrt{1 - y_{\perp}}\right) \right] dy_{\perp}$$
$$= B \int_{0}^{1} \left[1 - \exp\left(-2A/\sqrt{1 - y_{\perp}}\right) \right] dy_{\perp}, \qquad (38)$$

которое совместно с выражением (37) позволяет выразить константу *C* через *B*:

$$C = \frac{1}{2} BI(A), \tag{39}$$

)

где

$$I(A) = \frac{\int_0^1 \left[1 - \exp(-2A/\sqrt{1 - y_{\perp}})\right] dy_{\perp}}{\int_0^{y_0} M(y_0, y_{\perp}) \left[1 - \exp(-A/\sqrt{1 - y_{\perp}})\right] dy_{\perp}}.$$
 (40)

Решая теперь уравнения (33) с учетом непрерывности $f_1(y, y_{\perp})$ и $f_2(y, y_{\perp})$ на границе источника $y = y_0$, получаем выражения для функций распределения при $y < y_0$:

$$f_{1,2}(y, y_{\perp}) = B \bigg[\frac{1}{2} I(A) \big(M(y_0, y_{\perp}) \pm M(y, y_{\perp}) \big) + 1 - \exp \left(-A/\sqrt{1 - y_{\perp}} \right) \bigg], \qquad (41)$$

где значки "+" и "-" относятся к функциям f_1 и f_2 соответственно.

Физика и техника полупроводников, 2001, том 35, вып. 5

Рис. 2. Функции распределения носителей f(y) при концентрации примеси 5 · 10¹⁵ см⁻³ и электрический полях *F*, B/см: I - 300, 2 - 1000, 3 - 2000.

Рис. 3. Функции распределения носителей: (1'-3') — в направлении электрического поля $f(y, y_{\perp} = 0)$ (ступенчатые функции) и (1-3) — в перпендикулярном полю направлении $f(y, y_{\perp} = y)$ при концентрации примеси $5 \cdot 10^{15}$ см⁻³ и электрических полях *F*, В/см: 1 - 300, 2 - 1000, 3 - 2000.

Формулы (29)–(32) и (41) определяют функции $f_{1,2}(y, y_{\perp})$ во всем рассматриваемом интервале значений $0 < y < y_1$ с точностью до *B*.

Функция распределения носителей по полной энергии получается интегрированием по y_{\perp} :

$$f(y) = \frac{1}{2} \int_0^y \frac{f_1(y, y_\perp) + f_2(y, y_\perp)}{\sqrt{y(y - y_\perp)}} dy_\perp.$$
 (42)

Величину *В* можно определить из условия нормировки (7), которое в переменных y, y_{\perp} имеет вид

$$n = n_i f_r + \frac{k_0^3}{8\pi^2} \int_0^{y_1} \sqrt{y} f(y) dy.$$
 (43)

Напомним, что заселенность центра определяется величиной B: $f_r = B$.

Функция распределения носителей по полной энергии f(y), а также функции распределения носителей с импульсом, направленным вдоль электрического поля $(f(y, 0) = f_1(y, 0) + f_2(y, 0))$ и перпендикулярно ему $(f(y, y) = f_1(y, y) + f_2(y, y))$, приведены на рис. 2, 3. Все вычисления производились со следующими параметрами: $E_0 = 20$ мэВ, $\Gamma = 2$ мэВ, $\hbar\omega_o = 36$ мэВ

Рис. 4. Функции распределения носителей по энергии перпендикулярного движения при полной энергии $E_0 - 0$ (сплошные линии) и $\hbar\omega_o - 0$ (штриховые) при концентрации примеси $5 \cdot 10^{15}$ см⁻³ и электрических полях *F*, В/см: *I* — 300, *2* — 1000, *3* — 2000.

 $(y_1 = 1.8)$. Функция распределения носителей по энергии перпендикулярного движения для частиц с полной энергией $E_0(f(1, y_{\perp}))$ и $\hbar \omega_o(f(y_1, y_{\perp}))$ приведена на рис. 4. Имея в виду возможность использования простой изотропной модели для случая германия под давлением, мы в расчетах в качестве эффективной массы взяли $m = 0.08m_0$, что соответствует массе плотности состояний в верхней валентной подзоне сжатого германия (подзоне легких дырок). А при вычислении ϵ по формуле (14) использовалось значение $m_z = 0.32m_0$.

4. Двумерный случай

Для того чтобы проанализировать особенности кинетики носителей, заключенных в квантовую яму, при наличии резонансного рассеяния рассмотрим, как работает простая изотропная модель в случае двумерных носителей.

Кинетическое уравнение Больцмана для функции распределения двумерных носителей снова определяется уравнением (1) с учетом столкновительного члена, соответствующего резонансному рассеянию. Но при этом следует учитывать, что \mathbf{k} теперь двумерный вектор. Соответственно меняется плотность состояний и вид источника. Для распределения источника по энергии мы теперь имеем:

$$S = S_0 \left(1 - \frac{\varepsilon_{\mathbf{k}}}{\epsilon_0^{(2D)}} \right) \Theta \left(\epsilon_0^{(2D)} - \varepsilon_{\mathbf{k}} \right), \tag{44}$$

где $\varepsilon_{\mathbf{k}}$ — кинетическая энергия двумерного движения, а граница источника $\epsilon_0^{(2D)}$ определяется теперь уравнением

$$\epsilon_0^{(2D)} = \frac{\omega_o}{\upsilon_A} \frac{2}{\pi} eFL, \qquad (45)$$

где L — ширина квантовой ямы, а v_A — тот же параметр, характеризующий скорость испускания фононов, что и для трехмерного случая. При этом влияние квантовой

ямы на спектр фононов не учитывается и рассматриваются носители только на первом уровне размерного квантования в приближении бесконечно высоких барьеров. Параметр S_0 определяется из условия баланса потоков (3), в котором следует учитывать двумерность носителей.

С другой стороны, для интеграла столкновения снова можно использовать формулу (4), но при этом амплитуда вероятности рассеяния определяется выражением

$$t_{\mathbf{k}\mathbf{k}'}^{(2D)}\Big|^2 = \frac{1}{S^2} \frac{\hbar^4 k}{m^2} \,\sigma_r^{(2D)},\tag{46}$$

а вероятность захвата

$$W_{\mathbf{k}}^{(2D)} = n_i^{(2D)} \upsilon \sigma_r^{(2D)},$$
 (47)

где $v = \hbar k/m$ — скорость, а $n_i^{(2D)}$ — двумерная концентрация примеси. В приближении $\Gamma \ll E_0$, когда резонансное рассеяние имеет место только при $k_0 = \sqrt{2mE_0\hbar^2}$, для сечения резонансного рассеяния $\sigma_r^{(2D)}$ имеет вместо (10)

$$\sigma_r^{(2D)} = \frac{2\pi\Gamma}{k_0}\sigma(\varepsilon_k - E_0). \tag{48}$$

Вводя снова безразмерные переменные $y = \varepsilon_{\mathbf{k}}/E_0$, $y_{\perp} = \varepsilon_{\perp}/E_0$ и параметр $y_0^{(2D)} = \epsilon_0^{(2D)}/E_0$, мы снова приходим к уравнению, аналогичному (15),

$$\frac{\partial f_{1,2}(y, y_{\perp})}{\partial y} = \pm A^{(2D)} \frac{\delta(y-1)}{\sqrt{1-y_{\perp}}} \Big[B^{(2D)} - f_{1,2}(y, y_{\perp}) \Big] \\ \pm C^{(2D)} \frac{1-y/y_0}{\sqrt{y-y_{\perp}}} \Theta \left(y_0^{(2D)} - y \right), \quad (49)$$

где

$$A^{(2D)} = \frac{2\pi\Gamma}{k_0} \frac{n_i^{(2D)}}{eF},$$
(50)

 $(\mathbf{a}\mathbf{p})$

$$B^{(2D)} = \frac{1}{2\pi} \int_0^1 \frac{f_1(1, y_\perp) + f_2(1, y_\perp)}{\sqrt{y_\perp} \sqrt{1 - y_\perp}} \, dy_\perp.$$
(51)

Функция распределения по полной энергии f(y) в двумерном случае связана с $f_1(y, y_{\perp})$ и $f_2(y, y_{\perp})$:

$$f^{(2D)}(y) = \frac{1}{2\pi} \int_0^y \frac{f_1(y, y_\perp) + f_2(y, y_\perp)}{\sqrt{y_\perp} \sqrt{y_- y_\perp}} \, dy_\perp.$$
(52)

Обратим внимание на разницу между уравнениями (51) и (18), а также между (52) и (42), обусловленную двумерностью спектра. Величина $B^{(2D)}$ определяет заселенность резонансного состояния в двумерном случае: $f_r^{(2D)} = B^{(2D)}$. Будем строить решение кинетического уравнения по аналогии с трехмерным случаем и выразим $C^{(2D)}$ через $B^{(2D)}$, пользуясь уравнением баланса потоков, а саму величину $B^{(2D)}$ будем находить из условия нормировки:

$$n = n_i^{(2D)} f_r + \frac{k_0^2}{2\pi} \int_0^{y_1} f(y) \, dy.$$
 (53)

Изменение характера зависимости источника от энергии влияет на вид функции распределения при малых энергиях ($y < y_0^{(2D)}$) и на связь между $C^{(2D)}$ и $B^{(2D)}$. Вместо (39) мы имеем

$$C^{(2D)} = \frac{1}{2} B^{(2D)} I^{(2D)}(A),$$
(54)

где

 $I^{(2D)}(A)$

$$= \frac{\int_{0}^{1} \frac{1}{\sqrt{y_{1}}} \left[1 - \exp\left(-\frac{2A}{\sqrt{1} - y_{1}}\right)\right] dy_{\perp}}{\int_{0}^{y_{0}} \frac{1}{\sqrt{y_{\perp}}} M^{(2D)}(y_{0}^{(2D)}, y_{\perp}) [1 - \exp\left(-\frac{A}{\sqrt{1 - y_{\perp}}}\right)] dy_{\perp}},$$
(55)
$$M^{(2D)}(y, y_{\perp}) = 2\sqrt{y - y_{\perp}} \left(1 - \frac{1}{3} \frac{y}{y_{0}^{(2D)}} - \frac{2}{3} \frac{y_{\perp}}{y_{0}^{(2D)}}\right).$$
(56)

Приведем окончательные формулы, определяющие функции *f*_{1,2}:

1) в интервале $0 < y < y_0^{(2D)}$

$$f_{1,2}(y, y_{\perp}) = B^{(2D)} \left\{ \frac{1}{2} I^{(2D)}(A^{(2D)}) \left[M^{(2D)}(y_0, y_{\perp}) \right] \\ \pm M^{(2D)}(y, y_{\perp}) \right] + 1 - \exp\left(-A^{(2D)} / \sqrt{1 - y_{\perp}} \right) \right\}; \quad (57)$$

2) в интервале $y_0^{(2D)} < y < 1$

$$f_{1}(y, y_{\perp}) = B^{(2D)} \Big[I^{(2D)} \left(A^{(2D)} \right) M^{(2D)} \left(y_{0}^{(2D)}, y_{\perp} \right)$$
$$+ 1 - \exp \left(-A^{(2D)} / \sqrt{1 - y_{\perp}} \right) \Big]; \qquad (58)$$

$$f_2(y, y_\perp) = B^{(2D)} \left[1 - \exp\left(-A^{(2D)}/\sqrt{1-y_\perp}\right) \right];$$
 (59)

3) в интервале 1 < y < y1 ($y_1 = \hbar \omega_o / E_0$)

$$f_{1}(y, y_{\perp}) = B^{(2D)} \Big[I^{(2D)} \left(A^{(2D)} \right) M^{(2D)} \left(y_{0}^{(2D)}, y_{\perp} \right) \\ \times \exp \left(-A^{(2D)} / \sqrt{1 - y_{\perp}} \right) + 1 \\ - \exp \left(-2A^{(2D)} / \sqrt{1 - y_{\perp}} \right) \Big];$$
(60)

 $f_2(y, y_\perp) = 0.$ (61)

Функция распределения носителей по полной энергии $f^{(2D)}(y)$, а также функции распределения носителей с импульсом, направленным вдоль электрического поля $(f(y, 0) = f_1(y, 0) + f_2(y, 0))$ и перпендикулярно ему $(f(y, y) = f_1(y, y) + f_2(y, y))$, приведены на рис. 5, 6.

Функция распределения носителей по энергии перпендикулярного движения для частиц с полной энергией $E_0(f(1, y_{\perp}))$ и $\hbar \omega_o (f(y_1, y_{\perp}))$ приведена на рис. 7. В расчетах в качестве эффективной массы использовалось значение $m = 0.1m_0$ и L = 5 нм.

Рис. 5. Функции распределения двумерных носителей по энергии f(y) при концентрации примеси 10^{11} см⁻² и электрических полях *F*, B/см: I - 300, 2 - 1000, 3 - 2000.

Рис. 6. Функция распределения носителей: (1'-3') — в направлении вдоль электрического поля (ступенчатые функции) и (1-3) — перпендикулярно полю при концентрации примеси 10^{11} см⁻² и электрических полях *F*, B/см: 1 - 300, 2 - 1000, 3 - 2000.

Рис. 7. Функции распределения двумерных носителей по энергии перпендикулярного движения при полной энергии вблизи $E_0 - 0$ (сплошные линии) и $\hbar\omega_o - 0$ (штриховые) при концентрации примеси 10^{11} см⁻² и электрических полях *F*, В/см: I - 300, 2 - 1000, 3 - 2000.

На примере двумерного случая мы убедились, что учет множителя $(1 - f_k)$ в столкновительных членах оказывается несущественным при наших параметрах. Если заселенность велика, то соответствующие поправки легко учитываются итерацией и приводят к расширению области источника в пространстве энергий.

5. Обсуждение результатов

Прежде всего обсудим полученные результаты с точки зрения возможности формирования инверсной внутрицентровой заселенности. На рис. 8 представлены зависимости заселенности резонансного состояния от поля в двумерном и трехмерном случаях.

Рис. 8. Зависимости заселенности резонансного состояния от напряженности электрического поля: a — трехмерный случай, концентрация примеси, см⁻³: I — 10¹⁵, 2 — 5 · 10¹⁵; b — двумерный случай, концентрация примеси, см⁻²: I — 5 · 10¹⁰, 2 — 10¹¹.

В двумерном случае реализуется существенно более высокая заселенность резонансных состояний. Это обусловлено уменьшением числа состояний непрерывного спектра до энергии E_0 , где сосредоточена большая часть частиц. Соответственно понижение резонансной энергии приводит к увеличению заселенности резонансного состояния.

Отметим, что терагерцовая генерация на внутрицентровых переходах наблюдалась при электрических полях, превышающих порог примесного пробоя F_{thr} (для германия этот порог составляет порядка 10 В/см, а в напряженном германии он обычно еще ниже в силу уменьшения энергии связи основного состояния). Обычно примесный пробой сопровождается шнурованием тока. Простейшая модель, позволяющая адекватно описывать поведение носителей в условиях примесного пробоя, требует рассмотрения по крайней мере двух локализованных состояний: основного (E_0) и возбужденного (E_1).

После пробоя основного состояния стационарный режим внутри шнура поддерживается обычно меньшим значением напряженности электрического поля, которое обеспечивает динамическое равновесие между ударным возбуждением носителей из состояния E_1 и захватом носителей из зоны на это состояние.

В работе [8] методом Монте-Карло был детально исследован примесный пробой в *p*-Ge. Расчеты были

выполнены для концентраций акцепторов 10^{14} см⁻³. При этом для заселенности состояния E_1 в поле 30 В/см было получено значение 0.05, которое уменьшается с ростом поля до значений порядка 10^{-3} при полях выше 1000 В/см.

Таким образом, можно ожидать, что существует область полей, когда условие внутрицентровой инверсной заселенности выполняется.

На рис. 3, 4, 6 и 7 показана резкая анизотропия функции распределения. В направлении электрического поля она имеет обычный стримминговый вид, а в перпендикулярном полю направлении она имеет характерные подъемы в области энергий вблизи E_0 . Причем в двумерном случае этот подъем более ярко выражен.

6. Заключение

В работе предложен метод, позволяющий построить аналитическое решение кинетического уравнения для горячих носителей в присутствии резонансного рассеяния в условиях стриммингового режима. Метод применен для выявления особенностей функции распределения в случае двумерных и трехмерных носителей. Вычислена заселенность резонансных состояний и показано, что в двумерном случае она может достигать значений 6%, что указывает на перспективность двумерных легированных полупроводниковых структур для создания терагерцового униполярного лазера.

Авторы благодарят В.И. Переля и А.А. Андронова за очень полезные советы и обсуждение.

Финансирование работы осуществлялось за счет грантов РФФИ. И.Н. Яссиевич благодарит также STINT Fellowships Programme Contract № 99/527(00) за финансовую помощь, а А.А. Прокофьев — Swedish Institute за предоставление стипендии по гранту The New Wisby Programme.

Список литературы

- И.В. Алтухов, Е.Г. Чиркова, М.С. Каган, К.А. Королев, В.П. Синис, М.А. Одноблюдов, И.Н. Яссиевич. ЖЭТФ, 115, 89 (1999).
- [2] Yu.P. Gousev, I.V. Altukhov, K.A. Korolev, V.P. Sinis, M.S. Kagan, E.E. Haller, M.A. Odnoblyudov, I.N. Yassievich, K.A. Chao. Appl. Phys. Lett., **75**, 1 (1999).
- [3] M.A. Odnoblyudov, I.N. Yassievich, M.S. Kagan, Yu.M. Galperin, K.A. Chao. Phys. Rev. Lett., 83, 644 (1999).
- [4] M.A. Odnoblyudov, I.N. Yassievich, V.M. Chistyakov, K.A. Chao. Phys. Rev. B, 62, 2486 (2000).
- [5] А.А. Андронов. ФТП, 21(7), 1153 (1987) [Пер. с англ.:
 А.А. Andronov. Sov. Phys. Semicond., 21, 701 (1987)].
- [6] A.A. Andronov. In: Spectroscopy of Nonequilibrium Electrons and Phonons, ed. by C.V. Shank, B.P. Zakharchenya. Modern Problems in Condensed Matter Science (North-Holland, Amsterdam, 1992) v. 35.

Физика и техника полупроводников, 2001, том 35, вып. 5

- [7] Л.Е. Ландау, Е.М. Лифшиц. Теоретическая физика, т. III. Квантовая механика (нерелятивистская теория) (М., Наука, 1989).
- [8] W. Quade, G. Hupper, E. Schöll, T. Kuhn. Phys. Rev. B, 49, 13408 (1994).

Редактор Т.А. Полянская

Hot carries distribution function unde resonance scattering

A.A. Prokof'ev^{+,*}, M.A. Odnoblyudov^{+,*}, I.N. Yassievich^{+,*}

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia ⁺ Division of Solid State Theory, Department of Physics, Lund University, SE-223 62 Lund, Sweden