Лазерная эпитаксия гетероструктур HgCdTe/Si

© С.В. Пляцко[¶], Н.Н. Бергуш

Институт физики полупроводников Национальной академии наук Украины, 252028 Киев, Украина

(Получена 26 июля 2000 г. Принята к печати 6 октября 2000 г.)

Методом лазерного осаждения были получены тонкие пленки HgCdTe на подложках из Si при температуре роста $\leq 190^{\circ}$ C. Результаты оже-спектроскопии, оптических и электрофизических исследований показали большую зависимость качества осаждаемых пленок от типа источника и качества подложек Si.

В настоящей работе представлены результаты исследования оже-электронных спектров, структурных, электрофизических и оптических свойств слоев HgCdTe, выращенных на подложках Si с ориентацией (001) и (111) методом модулированной лазерной эпитаксии при распылении вещества мишени модулированным инфракрасным излучением. Температура подложек при эпитаксии HgCdTe не превышала 190°С. Источниками для напыления служили монокристаллы HgCdTe заданного состава, а также таблетки из измельченного материала, приготовленные холодным прессованием. Дополнительный источник паров Нд не использовался. Плотность мощности модулированного (с частотой 10 $\leq f \leq$ 100 Гц) лазерного излучения (энергия фотонов $\hbar\omega~=~0.118\,\mathrm{pB})$ изменялась в пределах $10^4 < W < 10^5 \, {\rm Br/cm^2}$. Шаг и геометрия сканирования, а также время распыления в точке задавались и управлялись компьютером. Из-за высокой температуропроводности HgCdTe $(2.2 \cdot 10^{-2} \text{ см}^2/\text{c})$ перекрытие соседних зон на мишени не допускалось. Это должно было исключить аккумуляцию тепла в зоне и уменьшить вклад конвективного термического испарения из окрестности зоны воздействия лазерного излучения. Состав слоев определялся после выращивания методами ожеэлектронной спектроскопии, рентгеновского энергетического дисперсионного анализа (ЭДРА) и из спектров оптического поглощения.

Оже-анализ показал, что на поверхности пленок присутствуют C, S, Cl, концентрация этих элементов достаточно быстро убывает в глубь пленки. Оценки показывают, что глубина распределения этих элементов не превышает ~ 1 нм. Содержание компонентов в слое оценивалось по методике сравнения образцов с материалом известного состава, поскольку использование коэффициентов элементной чувствительности для HgCdTe представляется некорректным по причине неоднозначного определения коэффициента элементной чувствительности для Hg — это во-первых, и во-вторых, коэффициенты элементной чувствительности определяются из сравнения интенсивностей оже-переходов в дифференциальных спектрах элемента (I_i) и чистой серебряной или кремниевой мишени (I_{Ag(Si)}), при этом не учитывается влияние матрицы, а также особенностей анализатора [1]. Концентрация атомов Hg, Cd и Te по всей толщине слоя, начиная с поверхности, практически не изменяется. Эти результаты удовлетворительно согласуются с данными ЭДРА.

Из сравнения оже-спектров слоев и монокристаллического материала мишени (рис. 1) следует, что независимо от температуры эпитаксии, в отличие от [2,3], в слоях наблюдается избыток ртути. Необходимо отметить также, что в слоях HgCdTe на Si при не очень высоких температурах роста $T_s \approx 190^{\circ}$ C состав зависел от объемной чистоты подложки, в частности от содержания углерода. В слоях, выращенных на Si с большой концентрацией углерода, наблюдалась диффузия C практически на всю толщину слоя $h \leq 5$ мкм.

Рентгеноструктурный анализ гетеросистем HgCdTe/Si показал, что независимо от температуры подложки при средней скорости роста $v \approx 20$ Å/c (скорость роста во время прохождения лазерных импульсов равна 240 Å/c) слои имеют поликристаллическую структуру с пре-

Рис. 1. Оже-спектры пленок HgCdTe на Si: 1 — пленка, выращенная из монокристаллической мишени; 2 — пленка, выращенная из прессованной таблетки. 3 — спектр объемного монокристалла — источника.

[¶] E-mail: plyatsko@laser.semicond.kiev.ua

имущественной ориентацией (111). Кроме того, в спектре присутствует пик, соответствующий ориентации (100). Отношение интенсивностей пиков, соответствующих ориентациям (111) и (100), увеличивается при уменьшении скорости роста.

Морфология поверхности пленок в меньшей степени определяется плотностью мощности излучения на мишени. Пленки, полученные при условии, что диаметр лазерного пятна значительно превышает глубину кратера $(d \gg h_{\rm cr})$ и при W = const всегда имели зеркальные поверхности — как свободную, так и прилегающую к подложке. Если распыление производить из одной точки до образования кратера $(d \lesssim h_{\rm cr})$, то на свободной поверхности пленки проявляются вкрапления, имеющие сферическую форму. Концентрация таких вкраплений увеличивалась по мере роста $h_{\rm cr}$, и пленка становилась матовой. Размер включений при этом не изменялся, а прилегающая к подложке поверхность оставалась идеально зеркальной. На поверхности кратера были видны следы расплава.

Полученный результат говорит о том, что вкрапления жидкой фазы возникают благодаря разогреву стенок кратера паровым потоком с последующим выносом расплавленной фазы в зону конденсации. Это подтверждается также зависимостью плотности вкраплений от расстояния между подложкой и источником: плотность существенно уменьшается с увеличением расстояния.

Морфология поверхности выращенных пленок исследовалась также методом сканирующей микроскопии на атомных силах (ACM) при комнатной температуре. Полученные ACM-изображения давали обзор поверхности размером 1.5×1.5 мкм². Пленки имели поликристаллическую структуру с "колоннообразными" кристаллитами, размер которых увеличивался при уменьшении скорости роста, что удовлетворительно согласуется с рентгеноструктурными исследованиями.

Такая же морфология поверхности наблюдалась и для слоев CdTe на Si в пирокой области температур роста, но вкрапления жидкой фазы при этом отсутствовали. Поэтому наиболее вероятно, что в слоях HgCdTe вкрапления содержат ртуть. Наличие таких вкраплений могло дать значительную ошибку при определении состава HgCdTe по оже-спектроскопии и ЭДРА. Представляется, что наиболее достоверная информация о составе может быть получена из спектров оптического поглощения. Исследования были проведены при температуре T = 340 K на спектрометре ИКC-31. Значение ширины запрещенной зоны E_g определялось на уровне поглощения $\alpha = 700$ см⁻¹ и, как оказалось, состав пленок соответствует составу монокристаллической мишени — источника Hg_{1-x}Cd_xTe (x = 0.22).

Электрофизические свойства пленок HgCdTe на Si исследованы в области температур 77 $\leq T \leq 310$ K (рис. 2). Все полученные образцы имели электронную проводимость. Инверсию типа проводимости можно было получить, если увеличить температуру роста до $T_s > 190^{\circ}$ C, когда в процессе роста и остывания про-

Рис. 2. Температурная зависимость удельного сопротивления ρ (1, 4), коэффициента Холла R_H (2, 5) и подвижности μ (3, 6) для пленок *n*-HgCdTe на Si, выращенных из монокристаллической мишени Hg_{1-x}Cd_xTe (x = 0.2) (1-3) и прессованной таблетки (4-6).

исходит реиспарение Hg. Подвижность носителей тока при T = 77 K в пленках была не ниже $\mu \approx 10^3 \text{ см}^2/\text{B} \cdot \text{c}$, а наиболее высокие значения достигали $\mu \approx 7 \cdot 10^3 \text{ см}^2/\text{B} \cdot \text{c}$. Это на порядок ниже, чем в слоях HgCdTe на Si, полученных молекулярно-лучевой эпитаксией (МЛЭ), но такой же величины, как в [2]. Такие низкие значения подвижности еще раз подтверждают поликристаллическую структуру объектов.

Электронный тип проводимости пленок не зависел от типа проводимости используемого полупроводникового кристалла. Концентрация носителей тока $N_D - N_A$ не опускалась ниже $9 \cdot 10^{15}$ см⁻³ и значительно увеличивалась с температурой измерения, когда в качестве источника использовался монокристаллический материал, и составляла $N_D - N_A \approx 5 \cdot 10^{18}$ см⁻³ (77 $\leq T \leq 350$ K) при использовании прессованных источников. Зависимости коэффициента Холла (R_H), удельного сопротивления (ρ) и подвижности (μ) от температуры представлены на рис. 2.

Различие в $N_D - N_A$ для различных типов источников нельзя однозначно связать с загрязнениями, которые вносятся в процессе прессования, поскольку условия распыления (W = const) монокристалла и мелкодисперсной среды — различные. Распыление таблетки приводит к образованию потока частиц с более высокой энергией, когда возможно проявление эффекта мягкой имплантации и возникновение донорных центров.

Полученные результаты являются следствием значительного пересыщения, возникающего в области подложки при распылении источника лазерным излучением. При таких условиях конденсации пленки становятся сплошными уже на начальной стадии роста, однако множество зародышей, которые возникают и не достигают при этом стадии оствальдсовского созревания, имеют значительную степень разориентации. В пределах используемых температур эпитаксии достичь упорядочения кристаллитов без существенного уменьшения скорости роста, но при сохранении конгруэнтного испарения, по-видимому, не удастся. Подтверждением этому являются работы [4,5] по выращиванию эпитаксиальных слоев и сверхрешеток CdTe/CdMnTe при распылении источников лазерным излучением.

Кроме того, проблема выращивания эпитаксиальных слоев соединений II–VI на Si связана не только с различием в простоянных решетки и в коэффициентах термического расширения, а также и с различием свободных поверхностных энергий слой/подложка [6,7]. Свободная поверхностных энергия Si (111) выше, чем для соединений II–VI вообще и HgCdTe в частности. Это различие для ориентации (111) достигает $\Delta \sigma$ (111) \approx 500 эрг/см², что способствует конденсации сплошных пленок [8], но не стимулирует процесс эпитаксиального роста сплошных монокристаллических слоев.

Таким образом, лазерное распыление мишеней излучением умеренной плотности мощности ($W \approx 10^5 \, \text{Bt/cm}^2$), когда не возникает газоплазменных потоков с большой дисперсией составляющих по энергии ($E \ll 2 \cdot 10^3$ эВ), открывает возможность создания вакуумной технологии эпитаксиального выращивания HgCdTe без дополнительного введения Hg, что не характерно для МЛЭ и лазерной молекулярно-лучевой эпитаксии [9]. Поэтому в настоящее время для гетеропары II-VI/Si поиск сурфактантов является крайне актуальной проблемой, особенно для роста пленок в неравновесных условиях, которые в разной степени, но присущи и МЛЭ, и лазерной эпитаксии. При лазерном распылении мишени энергия частиц в газовом потоке значительно превышает таковую при МЛЭ, что увеличивает их латеральную подвижность на поверхности и может облегчить гетероэпитаксию на подложках кремния.

Список литературы

- А.М. Таськов, И.М. Малинский, Д.Г. Родионов, А.Е. Гукайло. ЖАХ, 45 (5), 1001 (1990).
- [2] J.T. Cheung, D.T. Cheung. J. Vac. Sci. Technol., 21 (1), 182 (1982).
- [3] J.T. Cheung, H. Sankur. Sol. St. Mater. Sci., 15 (1), 63 (1988).
- [4] J.M. Wrobel, J.J. Dubowski. Appl. Phys. Lett., 55 (5), 469 (1989).
- [5] J.J. Dubowski, A.P. Roth, E. Teleporte, G. Peter, Z.C. Feng, S. Perkowitz. J. Cryst. Growth, 117, 862 (1992).
- [6] С.В. Пляцко. ФТП, **32**, 257 (1997).
- [7] R. Sporken, M.D. Lange, S. Sivananthan, J.T. Faurie. Appl. Phys. Lett., 59 (1), 81 (1991).

- [8] С.А. Кукушкин, А.В. Осипов. УФН, **168** (10), 1083 (1998).
- [9] J.T. Cheung, J. Madden. J. Vac. Sci. Technol. B, 5 (3), 705 (1987).

Редактор Л.В. Шаронова

Laser epitaxy of HgCdTe/Si heterostructures

S.V. Plyatsko, M.M. Vergush

Institute of Semiconductor Physics, National Academy od Sciences of Ukraine, 252028 Kiev, Ukraine

Abstract Thin films of HgCdTe have been obtained on Si substrates by the laser deposition method in dynamic vacuum at temperatures $\leq 190^{\circ}$ C. The results of the Auger spectroscopy, optical and electrophysical investigation showed strong dependence of the quality of films on the substrate composition and type of target.