Инфракрасные светодиоды с оптическим возбуждением на основе InGaAs(Sb)

© Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев[¶], М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин, В.В. Шустов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 2 августа 2000 г. Принята к печати 2 августа 2000 г.)

Приведены спектральные характеристики и мощность излучения светодиодов с длиной волны 3.1–3.6 мкм, изготовленных из структур, содержащих узкозонные слои InGaAs или InGaAsSb на подложке *n*⁺-InAs, в которых накачка осуществлялась с помощью светодиода из арсенида галлия. Получен коэффициент преобразования 90 мВт/А · см², сравнимый с данными для инжекционных светодиодов.

Введение

В p-n-структурах на основе материалов, близких по составу к арсениду индия, вследствие высокой подвижности электронов имеет место преимущественная рекомбинация носителей в p-области. Это является одной из причин довольно низкой эффективности излучателей в среднем инфракрасном (ИК) диапазоне, поскольку в материале p-типа проводимости безызлучательная ожерекомбинация усиливается из-за резонанса энергий запрещенной и спин-орбитально отщепленной зон [1].

Из этого следует, что квантовую эффективность излучателя можно повысить, создав преимущественную инжекцию в активную область *n*-типа проводимости. Инжекция может быть осуществлена, например, при оптическом возбуждении, т. е. без участия *p*-*n*-перехода. Оптическое возбуждение довольно широко используется при разработке лазеров на основе двойных гетероструктур и светодиодов для ближнего ИК диапазона [2,3], известно также несколько работ, посвященных фотолюминесценции (ФЛ) узкозонных материалов III-V при комнатной температуре [4,5]. Однако нам не известны работы, описывающие светодиоды III-V с оптическим возбуждением, работающие в среднем ИК диапазоне спектра. Вместе с тем недорогие и эффективные излучатели для длин волн $\lambda = 3-5$ мкм могут найти применение в газовом анализе, связи и т.п.

В настоящем сообщении приводятся характеристики светодиодов (СД) с оптическим возбуждением, изготовленных на основе твердых растворов InGaAs и InGaAsSb, обогащенных InAs и излучающих на длинах волн от 3.1 до 3.6 мкм.

Образцы и методика измерений

Нелегированные эпитаксиальные слои $In_{0.94}Ga_{0.06}As_{0.94}Sb_{0.06}$ и $In_{0.96}Ga_{0.04}As$ *п*-типа проводимости толщиной 3–8 мкм выращивались методом жидкофазной эпитаксии при температурах 650–720°C на сильно легированных подложках n^+ -InAs(Sn) с

концентрацией электронов $n = (2-4) \cdot 10^{18} \text{ см}^{-3}$, ориентированных в плоскости (111) или (100). Выращивание производилось из легированных Gd расплавов. При этом, [6,7],осуществляется геттерирование согласно дефектов, сопровождаемое уменьшением концентрации остаточных доноров и увеличением квантового выхода люминесценции. Согласованные с подложкой слои In_{0.94}Ga_{0.06}As_{0.94}Sb_{0.06} имели плотность наклонных дислокаций на уровне $10^4 - 10^5 \, \text{см}^{-2}$, в то время как сильное рассогласование параметров решетки в системе $In_{0.96}Ga_{0.04}As/InAs$ ($\Delta a/a \approx 0.3\%$) имело следствием возрастание плотности дислокаций до 10⁷ см⁻². В ряде случаев перед наращиванием "рабочего" слоя n-InGaAsSb на подложке осаждался широкозонный "буферный" слой *n*-InAs_{0.74}Sb_{0.09}P_{0.17} толщиной 2 мкм. Перед оптическим измерением подложка утонышалась до толщины 50 мкм.

Фотолюминесценция на просвет измерялась при комнатной температуре при возбуждении с помощью светодиода из GaAs (длина волны излучения $\lambda \approx 0.87$ мкм, внешний квантовый выход $\eta_{\rm ext} \approx 2\%$) размерами $1 \times 0.9 \,\text{мm}^2$ с диаметром мезы 0.4 мм, смонтированного на кремниевый носитель $(1.5 \times 1.7 \times 0.4 \text{ мм}^3)$, имеющий подковообразную контактную область для *n*-области и круглый *р*-контакт, расположенные в одной плоскости, как показано в наших предыдущих работах [8]. Благодаря отсутствию контактных областей на внешней поверхности возбуждающего GaAs-светодиода нам без затруднений удалось закрепить на его поверхности узкозонную структуру. При этом оптическое сопряжение узкозонного слоя с возбуждающим светодиодом было осуществлено с помощью халькогенидного стекла, имеющего показатель преломления *n* = 2.6. Для проведения серии экспериментов с разными толщинами слоев InGaAsSb использовалось послойное химическое травление.

Фотолюминесценция на отражение возбуждалась с помощью матрицы лазеров из GaAs и измерялась при температуре T = 77 K.

Во всех спектральных измерениях было использовано синхронное детектирование импульсного сигнала (частота 500 Гц, длительность импульса 5–30 мкс), получаемого с охлаждаемого InSb-фотодиода. Измерения

[¶] E-mail: bmat@iropt3.ioffe.rssi.ru

мощности СД производились с помощью охлаждаемого CdHgTe-фотодиода с учетом особенностей спектров и диаграммы направленности светодиодов.

Результаты и обсуждение

На рис. 1 приведены спектры ФЛ эпитаксиальных слоев, прошедшей через "окно" из InAsSbP и подложку n^+ -InAs (100) при различных толщинах InGaAsSb и InAsSbP. На рис. 1 показан также спектр пропускания при T = 300 К с краем поглощения в области максимума полосы ФЛ и длинноволновым поглощением на свободных носителях в подложке, начиная с $\lambda \gtrsim 5$ мкм.

Мы полагаем, что спектр ФЛ не деформируется из-за присутствия n^+ -InAs, поскольку вследствие сдвига Мосса-Бурштейна ожидаемая прозрачность подложки (t/t_0) составляет 0.83 при 3.14 мкм и 0.5 при 3 мкм. Спектр ФЛ InGaAsSb "на отражение" при $T = 77 \,\mathrm{K}$ (на рисунке не показан) имеет симметричную форму гауссовой кривой с полушириной FWHM = 44 мэВ и максимумом при $h\nu_{\rm max} = 420$ мэВ. Спектр InGaAsSb при комнатной температуре несимметричен и имеет затянутый коротковолновый край, заметно усиливающийся с уменьшением толщины слоя. При стравливании слоя InGaAsSb в спектре появляется пик с $h\nu_{\rm max} = 420$ мэB, соответствующий излучению из InAsSbP. В данном случае совпадение положения спектров InAsSbP (300 K) и InGaAsSb (77 K) является случайностью. Небольшое плечо $h\nu_{\rm max} = 350$ мэВ в спектре InAsSbP можно связать с неоднородностью травления и с наличием небольшого остатка слоя InGaAsSb. С уменьшением толщины слоя InGaAsSb интегральная интенсивность ФЛ изменяется аналогично интенсивности электролюминесценции в зависимости от глубины залегания *p*-*n*-перехода [9,10] и имеет максимум при толщине $d \approx 4$ мкм.

Рис. 1. Спектральные зависимости интенсивности фотолюминесценции (PL) (1-3) и пропускания (4) образцов InGaAsSb/InAsSbP/ n^+ -InAs. Толщины слоев InGaAsSb/InAsSbP, мкм: 6/2 (1, 4), 1.2/2 (2), 0/0.8 (3).

Рис. 2. Экспериментальные спектры фотолюминесценции (PL) (1, 2), пропускания (3) образца InGaAs/ n^+ -InAs и расчетные спектры фотолюминесценции (4–7). Температура 300 (1,3–7) и 77 К (2). Величина подгоночного параметра L_p : $L_p \gg d$ (4), $L_p = 10$ (5), 5 (6), 3 мкм (7).

Полученные данные по поглощению и излучению можно связать, используя принцип детального равновесия, предложенный Русбреком и Шокли. Учет самопоглощения излучения и экспоненциального распределения фотовозбужденных носителей [11] позволяет моделировать спектр ФЛ, используя диффузионную длину для дырок (L_p) в качестве подгоночного параметра. Расчетный спектр ФЛ InGaAsSb при всех разумных значениях параметра L_p смещен в коротковолновую область на 10 мэВ по отношению к экспериментальному спектру. Вместе с тем его положение соответствует величине $h\nu_{\rm max}(77\,{\rm K}) - 60\,{\rm мэB}$, которую следует ожидать, основываясь на известных температурных зависимостях люминесценции подобных материалов [4,12]. В этой связи можно предположить, что наблюдаемая ФЛ состоит из двух пиков, связанных, например, с рекомбинацией "зона-зона" и "зона-акцептор". В пользу этого предположения свидетельствует несимметричный вид спектра (см. рис. 1), а также довольно низкое значение коэффициента поглощения при энергии максимума люминесценции $\alpha(h\nu_{\rm max}) = 417\,{
m cm}^{-1}$ — значительно меньшее полученного ранее для рассогласованных с подложкой градиентных слоев InAs_{0.85}Sb_{0.15}, $\alpha(h\nu_{\rm max}) = 1400 \,{\rm см}^{-1}$ [13]. Пониженное значение $\alpha(h\nu_{\rm max})$ для изопериодного InGaAsSb не отражает, таким образом, общую тенденцию увеличения коэффициента поглощения при снижении плотности дислокаций, полученную в [13].

На рис. 2 приведены спектры пропускания и ФЛ образца InGaAs/ n^+ -InAs (111). Спектры ФЛ при T = 77 и 300 К имеют одинаковую форму, хорошо описываемую гауссовой кривой с полушириной FWHM = 30 мэВ и положениями пиков соответственно при 400 и 462 мэВ. На рис. 2 приведены также расчетные спектры, полу-

Рис. 3. Зависимость мощности светодиодов с оптическим возбуждением от амплитуды импульсного тока. Материал узкозонной активной области: I — InGaAs (λ = 3.14 мкм), 2 — InGaAsSb (λ = 3.6 мкм). T = 300 K.

ченные при различных значениях диффузионной длины неосновных носителей. Как видно из рис. 2, хорошее совпадение расчетной кривой с экспериментальной наблюдается при $L_p = 5$ мкм (см. точки на рисунке). Полученное значение *L_p* меньше диффузионной длины 10-20 мкм в "чистом" арсениде индия (с концентрацией электронов $n = 10^{15} \text{ см}^{-3}$) [14], но находится в соответствии с нашими оценками, основанными на наблюдении падения интенсивности люминесценции при послойном стравливании n-InAsSbP/n-InAs [15]. Следует отметить, что, несмотря на значительное несоответствие периодов решеток и высокую плотность дислокаций $(10^7 \, \text{см}^{-2})$, слои InGaAs имеют оптические свойства, характерные для совершенных кристаллов: резкий край поглощения, $\alpha \propto \exp(h\nu/\varepsilon)$ с $\varepsilon = 10$ мэВ, высокий коэффициент поглощения, $\alpha(h\nu_{\rm max}) = 1140 \,{\rm cm}^{-1}$, и стандартную для InAs скорость температурного изменения положения пика ФЛ (62 мэВ / 223 K). Из этого можно сделать вывод о том, что дислокации не вносят существенного вклада в рекомбинацию носителей в InGaAs.

Косвенно вышеуказанный вывод о несущественности влияния дислокаций подтверждается сравнением мощности InGaAs- и InGaAsSb-светодиодов с оптическим возбуждением (рис. 3). Как видно из рис. 3, оба светодиода имеют близкие значения выходной мощности с линейной зависимостью от тока. Отметим, что InGaAs-светодиод не был оптимизирован, в то время как InGaAsSb-светодиод имел оптимальную толщину узкозонного активного слоя — 3 мкм.

Линейность ватт-амперной характеристики является еще одним преимуществом СД с оптическим возбуждением, поскольку обычные светодиоды в среднем ИК диапазоне спектра часто насыщаются при больших токах [10,16]. Отметим также и то, что полученный коэффициент преобразования для СД из InGaAsSb $(90 \text{ мBt}/\text{A} \cdot \text{cm}^2)$ сравним с лучшими данными для СД в том же спектральном диапазоне (115 мBt/A · cm², InGaAs [17]).

Заключение

Таким образом, нами созданы первые оптически возбуждаемые светодиоды для среднего ИК диапазона спектра на основе твердых растворов III-V, имеющие мощность, близкую к лучшим значениям, получаемым в обычных светодиодах. Высокое напряжение и, соответственно, высокая потребляемая мощность таких светодиодов компенсируются простотой в изготовлении, поскольку узкозонный активный слой может быть приготовлен без применения методов фотолитографии и формирования *p*-*n*-перехода. Важным является также то, что дислокации не оказывают существенного влияния на работу СД с оптическим возбуждением, что позволяет создавать неизопериодные светодиодные структуры, содержащие, например, InGaAs, для важного с точки зрения газового анализа диапазона 2.5-3.5 мкм. В заключение отметим, что применение градиентных структур на основе InAsSbP [18] позволит расширить спектральный диапазон и область применения СД с оптическим возбуждением.

Авторы считают приятным долгом поблагодарить О.Н. Сараева за предоставление чипов светодиодов GaAs и фонд гражданских исследований США для стран СНГ (CRDF) за административную поддержку работы.

Список литературы

- [1] M. Takeshima. J. Appl. Phys., 43 (10), 4114 (1972).
- [2] J.L. Malin, C.L. Felix, J.R. Meyer, C.A. Hoffman, J.F. Pinto, C.-H. Lin, P.C. Chang, S.J. Murry, S.-S. Pei. Electron. Lett., 32 (17), 1593 (1996).
- [3] M. Boroditsky, T.F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, E. Yablonovitch. Appl. Phys. Lett., 75 (8), 1036 (1999).
- Z.M. Fang, K.Y. Ma, D.H. Jaw, R.M. Cohen, G.B. Stringfellow.
 J. Appl. Phys., 67 (11), 7034 (1990).
- [5] X.Y. Gong, T. Yamaguchi, H. Kan, T. Makino, N.L. Rowell, Y. Lacraoix, A. Mangyou, M. Aoyama, M. Kumagawa. Japan. J. Appl. Phys., 36, 738 (1997).
- [6] Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. ФТП, 33 (8), 1010 (1999).
- [7] A. Krier, H.H. Gao, V.V. Sherstnev. J. Appl. Phys., 85 (12), 8419 (1999).
- [8] B. Matveev, N. Zotova, S. Karandashov, M. Remennyi, N. Il'inskaya, N. Stus', V. Shustov, G. Talalakin, J. Malinen. IEE Proc. Optoelectron., 145 (5), 254 (1998).
- [9] A.A. Bergh, P.J. Dean. *Light-emitting diodes* (Claredon Press, Oxford, 1976).
- [10] M.J. Kane, G. Braithwaite, M.T. Ereny, D. Lee, T. Martin, D.R. Wright. Appl. Phys. Lett., **76** (8), 943 (2000).
- [11] D.D. Sell, H.C. Casey Jr. J. Appl. Phys., 45 (2), 800 (1974).
- [12] М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. ФТП, 34 (1), 99 (2000).

- [13] Н.В. Зотова, А.В. Лосев, Б.А. Матвеев, Н.М. Стусь, Г.Н. Талалакин, А.С. Филипченко. Письма ЖТФ, 16 (4), 76 (1990).
- [14] http://www.ioffe.rssi.ru/SVA/NSM/Nano/index.html
- [15] Н.П. Есина, Н.В. Зотова, Б.А. Матвеев, Л.Д. Неуймина, Н.М. Стусь, Г.Н. Талалакин. ФТП, **19** (11), 2031 (1985).
- [16] M.K. Parry, A. Krier. Semicond. Sci. Technol., 8, 1764 (1993).
- [17] M.K. Parry, A. Krier. Electron. Lett., **30** (23), 1968 (1994).
- [18] Б.А. Матвеев, Н.В. Зотова, Н.Д. Ильинская, С.А. Карандашев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. Патент РФ № 2154324 с приоритетом от 27.04.99.

Редактор Л.В. Шаронова

InGaAs(Sb) optically pumped mid-infrared light-emitting diodes

N.V. Zotova, S.A. Karandashev, B.A. Matveev, M.A. Remennyi, N.M. Stus', G.N. Talalakin, V.V. Shustov

loffe Physicotechnical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract We report on spectral and power characteristics of mid-infrared light-emitting diodes in the $3.1-3.6 \,\mu\text{m}$ range from InGaAsSb/ n^+ -InAs and InGaAs/ n^+ -InAs structures optically pumped using a GaAs light-emitting diode. Devices exhibited the conversion efficiency as high as 90 mW/A·cm² close to conventional light-emitting diodes.