Новый магнитный полупроводник Cd_{1-x}Mn_xGeP₂

© Г.А. Медведкин*,#, Т. Ишибаши#, Т. Ниши#, К. Сато#

* Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

[#] Факультет технологии Токийского университета сельского хозяйства и технологии,

184-8588 Токио, Япония

(Получена 8 августа 2000 г. Принята к печати 16 августа 2000 г.)

Выращен и исследован новый полупроводниковый материал, представляющий собой твердый раствор в группе тройных алмазоподобных полупроводников с переходным элементом Mn. Согласно рентгеновским дифракционным измерениям, кристаллическая структура подобна базовому материалу CdGeP₂ с решеткой халькопирита. Межплоскостные расстояния и постоянная решетки снижаются с увеличением концентрации марганца: $a = 5.741 \text{ Å} \rightarrow 5.710 \text{ Å} \rightarrow 5.695 \text{ Å}$ в ряду соединений CdGeP₂ \rightarrow Cd_{1-x}Mn_xGeP₂ \rightarrow Cd_{1-y}Mn_yGeP₂ (x < y). Методами электронной микроскопии и энергетической дисперсии рентгеновских лучей исследован состав на поверхности и концентрационные профили в глубину для химических элементов четверной системы Cd–Mn–Ge–P. На глубине 0.4 мкм отношение молекулярных концентраций марганца и кадмия составляет Mn/Cd = 0.2.

1. Введение

Семейство тройных полупроводников с общей формулой $A^{II}B^{IV}C_2^V$, прогнозированное в ранних работах Фольберта и Горюновой [1,2] как группа кристаллохимических аналогов бинарных соединений $A^{III}B^V$, было получено в виде монокристаллов и исследовалось достаточно интенсивно в течение последних 40 лет. Ряд соединений этого семейства привлекает своими высокими нелинейно-оптическими характеристиками (ZnGeP₂, CdGeAs₂), поляризационно-оптическими и излучающими свойствами, высокой фоточувствительностью (CdSnP₂, CdGeP₂, CdSiAs₂), а также широкими возможностями гетероэпитаксии твердых растворов с бинарными соединениями (GaAs, InP) [3–5].

Элемент II группы — Cd или Zn (металл подгруппы IIВ) в полупроводниках А^{II}В^{IV}С^V₂ проявляет свою обычную валентность 2+. Известно, что в Периодической таблице ряд химических элементов способен проявлять валентность, отличную от номера группы. Так, например, переходной *d*-металл Mn проявляет валентность 2+ в твердых растворах с бинарными соединениями А^{II}В^{VI} и валентность 3+ с бинарными соединениями А^{III}В^V. Кроме того, марганец может проявлять валентность более высокую (вплоть до 7+) в неалмазоподобных неполупроводниковых оксидах. В последние годы значительное внимание было приковано к разбавленным магнитным полупроводникам (DMS) в традиционных бинарных системах А^{II}В^{VI} и А^{III}В^V. Сегодня широко проводятся исследования, например, в бинарных твердых растворах CdMnTe и GaMnAs, обладающих магнитными свойствами. Однако до сих пор марганец как потенциальный член твердых растворов с тройными соединениями А^{II}В^{IV}С^V₂ не рассматривался. Малые концентрации Мп как легирующей примеси не показали сколь либо примечательных магнитных и других свойств [3]. Соединения с аналогичной химической формулой А^{II}В^{IV}С^V₂, содержащие Mn, не были предсказаны в ранних работах и поэтому не было предпринято достаточных усилий для выращивания таких материалов. Последние теоретические работы предполагают возможность наблюдения ферромагнетизма в DMS благодаря механизму двойного обмена [6]. Например, в бинарном ZnO с примесью Mn ферромагнитное/антиферромагнитное упорядочение достигается в результате эффекта солегирования, т. е. при совместном легировании акцепторами/донорами и магнитным элементом. В тройных полупроводниковых материалах $A^{II}B^{IV}C_2^V$ эффект солегирования собственными точечными дефектами задается природой существования двух сортов катионов. Поэтому мы сфокусировали усилия на соединении CdGeP₂ с химической подстановкой Mn для поиска ранее неизвестного материала DMS.

Настоящая работа знакомит с получением, микроструктурными свойствами и параметрами кристаллической решетки нового полупроводникового материала, найденного в системе Cd–Mn–Ge–P.

2. Эксперимент

Для получения твердого раствора CdMnGeP₂ был использован метод твердофазных химических реакций. В качестве материала-хозяина был использован монокристаллический CdGeP2. Вакуумное нанесение слоя марганца и последующая реакция, сопровождаемая диффузией Mn в подложку, была проведена в камере установки молекулярно-пучковой эпитаксии (Eiko Engineering, Япония). Остаточное давление в камере было на уровне 1.4 · 10⁻⁸ Торр. Конкретные технологические параметры процесса (времена, скорости и температуры) будут описаны в другом месте. Контроль качества поверхности исходной подложки и модифицированной поверхности на каждом этапе технологического процесса осуществлялся с помощью метода дифракции отраженных электронов высокой энергии (RHEED). Микроструктура на поверхности и на сколе структуры была исследована с помощью методов энергетического дисперсионного рентгеновского анализа (EDX) и полевой эмиссионной сканирующей электронной микроскопии (FE-SEM), проведенных на электронном микроскопе Hitachi S-4500 с приставкой EMAX-577OW и Si-кристалл-детектором Horiba Ltd., model S782XI со спектральным разрешением 144 эВ. Дифракционные рентгеновские измерения проводились на установках Rigaku RAD-IIC и Rigaku RAD-B с InP-кристалл-монохроматором. Ориентация кристалла была также подтверждена измерениями лауэграмм на рентгеновской установке Rigaku R-AXIS. Исследования дифракции были выполнены при различных интенсивностях рентгеновских лучей (излучение Cu K_{α} , Ni-фильтр) для варьирования глубины поглощения в слое и подложке.

3. Результаты и их обсуждение

На рис. 1 представлены картины RHEED для исходной поверхности кристалла CdGeP₂ с ориентацией, близкой к (112), и этой же поверхности после нанесения слоя Мп — до проведения твердофазной химической реакции и после нее. Высокое качество поверхности кристаллаподложки видно из рис. 1, *а*. Нанесение слоя марганца приводит к исчезновению атомного упорядочения монокристаллического типа (рис. 1, *b*). После завершения реакции полученный слой характеризуется однородной микроструктурой по поверхности с характерной текстурой (рис. 1, *c*).

Толщина и процентный состав полученных слоев твердого раствора CdMnGeP₂ контролировался с помощью методов EDX и FE-SEM. Характерный EDX-спектр для поверхности показан на рис. 2. Расчет процентного отношения велся автоматически с учетом фона (показан штриховой линией на рис. 2) и с использованием стандартных проб. Исследование поперечного скола образца дало информацию о распределении химического состава в глубину кристалла. На рис. 3 показаны концентрационные профили для элементов, участвоваших в реакции. Видно, что к поверхности суммарная концентрация Cd + Ge + P спадает, в то время как концентрация Mn растет. В предположении первостепенного замещения атомов кадмия атомами марганца отношение концентраций Mn/Cd на поверхности достигает 53.4%. Возможность подстановки атомов Mn в позиции других атомов (Ge и P) значительно ниже и малое количество фазы GeP на поверхности также поддерживает наше предположение о том, что главный процесс замещения есть $Mn \rightarrow Mn_{Cd}$. Концентрация марганца спадает достаточно быстро с глубиной, и уже на 0.6 мкм отношение Mn/Cd составляет 12.7%, а на глубине 2.5 мкм — 0.9%. Профиль концентрации Mn может быть описан экспоненциальным спадом

$$C = C_0 + A \exp(-x/t),$$

где C_0 — фоновая концентрация Mn, принятая равной нулю (см. эксперимент на рис. 3 при d > 10 мкм);

Рис. 1. Структура поверхности в отраженных дифрагированных электронах (картины RHEED) на разных стадиях подготовки слоя материала $Cd_{1-x}Mn_xGeP_2$ на кристалле $CdGeP_2$, направление [111]: *а* — исходная поверхность, *b* — после осаждения слоя Mn молекулярным пучком, *с* — после завершения твердофазной химической реакции.

Рис. 2. Энергетический спектр дисперсии рентгеновских лучей для образца $Cd_{1-x}Mn_xGeP_2$. Анализируемые химические элементы указаны у соответствующих пиков. Наличие других элементов не наблюдалось.

А — константа (имеет смысл предельной концентрации на поверхности); t — эффективная глубина, на которой предельная концентрация спадает в e раз.

Рентгеновские дифракционные измерения кристаллов показывают, что выращенный слой Cd_{1-r}Mn_rGeP₂ не отличается сильно по кристаллической структу-Присутствие других фаз не быре от CdGeP₂. ло обнаружено. Исключение составляет фаза GeP, небольшое количество которой, возможно, существует в образце, однако его концентрация во много раз ниже концентрации основных двух фаз. Для экспериментальных условий преобладающего поглощения рентгеновских лучей в слое, спектр $2\theta/\theta$ показан на рис. 4. Наличие 4-х порядков дифракционных отражений указывает на высокое качество кристалла и слоя. Отношение величин соответствующих межплоскостных расстояний составляет $d_1: d_2: d_3: d_4 = 1: 2: 3: 4$, пиковые (интегральные) интенсивности этих четырех рефлексов относятся как 16:7:3:1 (7.4:3.9:1.4:1).

Главный максимум рефлекса (112), как и для последующих порядков (244), (366) и (488), оказывается смещенным относительно подложки CdGeP₂ в сторону больших углов 2θ . Это смещение указывает на меньший параметр кристаллической решетки для полученных слоев. Действительно, исходя из оценки ковалентных радиусов для Cd и Mn (1.405 и 1.17 Å) можно ожидать уменьшения межплоскостных расстояний в случае твердого раствора с увеличением концентрации Mn. Расчеты параметра решетки были проведены в предположении близких кристаллических структур для CdGeP₂ и CdMnGeP₂ и с использованием выражения $a = d\sqrt{2/\cos \vartheta_{112}}$, где $d = n\lambda/2\sin\theta$ — межплоскостное расстояние $\vartheta_{112} = 37.0^{\circ}$ — угол между тетрагональной осью и плоскостью (112) в кристалле CdGeP₂. Полученные величины для двух образцов с разным составом показывают уменьшение параметра решетки с концентрацией Mn: $a = 5.741 \text{ Å} \rightarrow 5.710 \text{ Å} \rightarrow 5.695 \text{ Å}$ для ряда CdGeP₂ \rightarrow Cd_{1-x}Mn_xGeP₂ \rightarrow Cd_{1-y}Mn_yGeP₂ (x < y). Таким образом, слой Cd_{1-x}Mn_xGeP₂ представляет собой монокристаллическую фазу (за исключением тонкого приповерхностного текстурированного слоя) с кристал-

Рис. 3. Концентрационные профили для химических элементов в образце CdGeP₂/CdMnGeP₂. Обозначение CdGeP соответствует суммарной концентрации трех элементов. Поверхность образца условно показана заштрихованной полосой.

XRD intensity, cps 40000 (224) 30000 20000 (336) 10000 K_{β} 0 20 40 60 80 100 120 140 2θ , deg

Рис. 4. Рентгеновский дифракционный спектр при сканировании 2θ в сцепке $2\theta/\theta$. Ориентация кристалла (112), температура T = 300 К. Пики рефлексов всех 4-х порядков для $Cd_{1-x}Mn_xGeP_2$ смещены относительно подложки $CdGeP_2$ в сторону больших углов.

лической структурой, подобной халькопириту. Отметим также, что тонкий текстурированный слой (t < 0.1 мкм) может быть легко удален в подходящем химическом травителе (например, Br₂/MeOH), при этом монокристаллический слой с высоким содержанием марганца сохраняется.

60000

50000

(112)

Измерение спектров фотолюминесценции показывает смещение главного спектрального максимума в ближнюю ультрафиолетовую область. Этот результат говорит о том, что новый материал Cd_{1-x}Mn_xGeP₂ на поверхности кристалла имеет увеличенную ширину запрещенной зоны относительно CdGeP₂ ($E_g = 1.7 \, \mathrm{pB}$) более чем в 2 раза ($E_g > 3.5$ эВ). Также была обнаружена магнетизация полученных образцов с формой петли гистерезиса, характерной для ферромагнетиков. Магнитное поле насыщения составляет $H_S = 2 \,\mathrm{k}\Im$ и коэрцитивность H_C около 0.5 кЭ при комнатной температуре. Измерение температурной зависимости намагниченности дало температуру Кюри $T_{\rm C} = 320$ K, что является рекордным значением для алмазоподобных полупроводников [7,8]. Эти и другие свойства нового магнитного полупроводника более подробно будут описаны в отдельной публикации.

4. Заключение

В работе исследованы параметры химического состава, микроструктурные и кристалло-структурные свойства нового магнитного полупроводника $Cd_{1-x}Mn_xGeP_2$. Показано, что в семействе тройных полупроводников $A^{II}B^{IV}C_2^V$ возможно образование новых полупроводниковых фаз с кристаллической структурой, близкой к структуре халькопирита. Слой твердого раствора Cd_{1-*x*}Mn_{*x*}GeP₂ имеет монокристаллическую структуру и постоянную решетки, меньшую чем CdGeP₂.

Авторы благодарят Японский фонд для содействия науке (JSPS, Tokyo) за поддержку настоящей работы по выращиванию новых полупроводниковых материалов. Авторы признательны М.Е. Бойко за полезные обсуждения результатов рентгеновских дифракционных измерений.

Список литературы

- O.G. Folberth. Patent BRG No. 1.044.980, kl. 21g 11/02 (November 14, 1955).
- [2] Н.А. Горюнова. Сложные алмазоподобные полупроводники (М., Сов. радио, 1968).
- [3] Landolt-Börnstein. Semiconductors: Physics of Ternary Compounds, ed. by O. Madelung (Berlin–Heidelberg, Springer Verlag, 1985) v. 17h.
- [4] Г.А. Медведкин, Ю.В. Рудь, М.А. Таиров. Полупроводниковые кристаллы фотоприемников линейно поляризованного излучения (Ташкент, ФАН, 1992).
- [5] Abstracts 12th Int. Conf. on Ternary and Multinary Compounds (Taiwan, March 13–17, 2000) [Proc. ICTMC-12, Special issue. Jap. J. Appl. Phys. (2000)].
- [6] K. Sato, H. Karayama-Yoshida. Jap. J. Appl. Phys., 39, L555 (2000).
- [7] G.A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa, K. Sato. Jap. J. Appl. Phys., 39, L949 (2000).
- [8] K. Sato, G.A. Medvedkin, T. Ishibashi. Proc. Int. Conf. on Physics and Applications of Spin-Related Phenomena in Semiconductors (PASP 2000), Sendai, Japan, Sept. 13–15, 2000.

Редактор Т.А. Полянская

New magnetic semiconductor $Cd_{1-x}Mn_xGeP_2$

G.A. Medvedkin*,[#], T. Ishibashi[#], T. Nishi[#], K. Sato[#]

*loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia #Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan

Abstract A new semiconductor material in the state of solid solution pertaining the group of $A^{II}B^{IV}C_2^V$ ternary diamondlike semiconductors with Mn transition element has been grown and investigated. According to X-ray diffraction measurements, its crystalline structure is similar to CdGeP₂ base material having chalcopyrite lattice. The interplanar spacing and lattice constants decrease with manganese concentration, $a = 5.741 \text{ Å} \rightarrow 5.710 \text{ Å} \rightarrow 5.695 \text{ Å}$ in a series of compounds CdGeP₂ \rightarrow Cd_{1-x}Mn_xGeP₂ \rightarrow Cd_{1-y}Mn_yGeP₂ (x < y). The composition on the surface and concentration profiles in depth were studied by scanning electron microscopy (SEM) and energy dispersive X-rays (EDX) method for Cd–Mn–Ge–P quaternary system. The ratio of molecular concentrations on manganese and cadmium were found to be Mn/Cd = 0.2 at the depth of 0.4 μ m.