Оптические исследования квантовых точек InP

© Д.А. Винокуров, В.А. Капитонов, Д.Н. Николаев, З.Н. Соколова, И.С. Тарасов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 18 июля 2000 г. Принята к печати 26 июля 2000 г.)

Представлены результаты фотолюминесцентных исследований самоорганизующихся наноразмерных кластеров (квантовых точек) InP в матрице $In_{0.49}Ga_{0.51}P$, выращенных на подложке GaAs методом газофазной эпитаксии из металлорганических соединений. Получены зависимости эффективности люминесценции от температуры в интервале 77-300 K и от уровня возбуждения при мощности накачки 0.01-5 кBt/см². Спектры фотолюминесценции являются суперпозицией излучения квантовых точек и смачивающего слоя. Соотношение их интенсивности зависит от мощности накачки и температуры, а длина волны излучения структуры изменяется в пределах 0.65-0.73 мкм. При низком уровне возбуждения и 77 K квантовые точки InP имеют высокую температурную стабильность длины волны излучения и высокую квантовую эффективность.

В последнее время интенсивно исследуются фундаментальные физические свойства нуль-мерных объектов. К таким объектам, в частности, относятся самоорганизующиеся квантовые точки (OD) — наноразмерные структуры, возникающие при гетероэпитаксиальном выращивании полупроводников с большим рассогласованием параметров кристаллической решетки [1]. На квантовых точках In(Ga)As в матрице GaAs уже получены эффективные фотоприемники [2] и гетеролазеры [3,4] с пороговой плотностью тока порядка 35 А/см² [4]. Большой практический интерес представляют наноструктуры с квантовыми точками InP, на основе которых возможно создавать наиболее коротковолновые лазерные структуры, излучающие в красном диапазоне длин волн. Основной технологический метод получения квантовых точек — молекулярно-лучевая эпитаксия (МВЕ), который, однако, имеет большие сложности при работе с фосфором. Квантовые точки InP могут воспроизводимо выращиваться только методом газофазной эпитаксии из металлорганических соединений (MOCVD), хотя в работе [5] сообщается о создании лазеров с квантовыми точками InP, полученными методом MBE. Эти лазеры работают только в импульсном режиме генерации при температуре, не превышающей 90 К.

В настоящей работе представлены результаты фотолюминесцентных (ФЛ) исследований гетероструктур с квантовыми точками InP, выращенными в матрице In_{0.49}Ga_{0.51}P на подложках GaAs. Исследования проводились в широком диапазоне температур (77–300 К) и при различных уровнях накачки. Массивы напряженных QD были получены методом газофазной эпитаксии из металлорганических соединений [6,7] в изотипных гетероструктурах при температуре 700°С. Слой с QD был заключен между буферным слоем In_{0.49}Ga_{0.51}P толщиной 0.35 мкм, согласованным по параметру решетки с подложкой GaAs ориентации (100), и верхним широкозонным слоем In_{0.49}Ga_{0.51}P толщиной 0.04 мкм. Номинальная толщина слоя с InP QD варьировалась от 0.5 до 12 монослоев (ML). Рост структур происходил в режиме Странского-Крастанова, который присущ системам с большим рассогласованием постоянных решетки (а) (на границе $In_{0.49}Ga_{0.51}P$ и InP $\Delta a/a = 3.7\%$). В этом режиме на поверхности широкозонной матрицы $In_{0.49}Ga_{0.51}P$ сначала реализуется послойный рост 1-3 ML InP так называемого смачивающего слоя (WL), а затем начинается образование трехмерных QD InP.

Возбуждение исследуемых образцов осуществлялось Ar⁺-лазером с длиной волны излучения 0.514 мкм. Плотность возбуждающего излучения изменялась в пределах 0.01–5 кВт/см². Сигнал от гетероструктуры регистрировался фотоэлектронным умножителем с максимальной спектральной чувствительностью в диапазоне длин волн 0.35–0.9 мкм.

В полученных спектрах ФЛ наблюдался интенсивный пик, соответствующий излучению InP QD. При 77 К и мощности накачки 50 Вт/см² этот пик имел максимум при энергии 1.72 эВ, полуширину 50 мэВ и на 2 порядка превосходил излучение матрицы. Проведенные ранее исследования [7] показали, что полученные QD InP являются однородными и когерентными (бездислокационными) наноразмерными объектами, поскольку энергия максимума пика ФЛ QD остается практически неизменной при осаждении 2–7 ML InP. Максимальная внешняя квантовая эффективность ФЛ составляет 30% при 77 К у структур с номинальной толщиной 6 ML InP.

На рис. 1 приведены экспериментальные температурные зависимости максимума пика ФЛ QD номинальной толщины 5 ML, InGaP-матрицы при низком уровне возбуждения (50 Bт/см²), а также расчетные значения температурной зависимости энергии основных переходов сильно напряженной квантовой ямы (QW) InP толщиной 6 ML (1 ML = 2.9 Å), попадающие в один диапазон энергий с QD InP. Температурная зависимость длины волны излучения матрицы повторяет температурное сужение запрещенной зоны InGaP. Наиболее слабую температурную зависимость длины волны излучения в интервале температур 77–300 К имеют QD InP.

На рис. 2 приведены спектры ФЛ структур с QD InP при номинальной толщине осажденного слоя InP 3 ML (сплошные кривые) и 5 ML (штриховые кривые) при 77 К и различных уровнях возбуждения в интервале 0.01–3.5 кВт/см². Эти пики являются суперпозицией двух пиков излучения — QD и смачивающего слоя. При

Рис. 1. Экспериментальные температурные зависимости максимума пика фотолюминесценции при уровне возбуждения 50 Вт/см²: I — матрица $In_{0.49}Ga_{0.51}P$; 3 — квантовые точки InP (номинальная толщина осажденного слоя 5 ML); 2 — расчетные значения для сильно напряженной квантовой ямы InP толщиной 6 ML.

Рис. 2. Спектры фотолюминесценции структур с квантовыми точками InP при номинальной толщине осажденного слоя 3 ML (сплошные кривые) и 5 ML (штриховые кривые) при 77 K и различных уровнях накачки, кВт/см²: *1* — 3.5, *2* — 1.0, *3* — 0.15, *4* — 0.04, *5* — 0.01.

малых уровнях возбуждения (10 и 40 Вт/см²) спектры состоят только из линии излучения QD, и положение пиков ФЛ этих двух структур совпадает. При накачке более 100 Вт/см² спектры смещаются в коротковолновую область, что обусловлено появлением и дальнейшим

увеличением коротковолнового пика излучения от WL и насыщением излучения QD с ростом мощности накачки. Согласно [7], энергия максимума излучения WL порядка 1.9 эВ, что соответствует, по нашим оценкам, толщине WL порядка 2.5 ML (7.3 Å). Расчеты показывают, что в сильно напряженном WL InP квантовая яма для дырок в 1.3 раза глубже, чем для электронов. Квантовые ямы содержат по одному уровню размерного квантования. Энергия связи электронов менее 6 мэВ, а дырок — порядка 100 мэВ. В квантовых же точках InP, согласно [8], энергия связи дырок 120 мэВ. Даже при низких уровнях накачки (10 Вт/см²) смачивающий слой и QD "залиты" электронами, в то время как уровень Ферми дырок расположен на 90 мэВ ниже верха квантовой ямы WL; дырочный уровень в QD заполнен, а в WL опустошен. Заполнение дырочного уровня в WL начинается только при мощности накачки порядка 150 Bт/см², когда и наблюдается смещение спектров на рис. 2 в коротковолновую область. Следует отметить, что с ростом накачки интенсивность излучения смачивающего слоя растет, а квантовых точек не изменяется в связи с насыщением уже при малых уровнях возбуждения. Однако доля излучения QD в спектре ФЛ для структуры с 5 ML больше, чем с 3 ML, что обусловлено большей плотностью QD в структуре с 5 ML (наибольшая интенсивность ФЛ QD наблюдается у структур с 6 ML InP [7]). В результате этого на рис. 2 спектральное смещение у структур с 5 ML InP более слабое, чем у структур с 3 ML.

Спектры ФЛ гетероструктуры с 3 ML InP при высоких уровнях накачки (5 кВт/см²) при различных температу-

Рис. 3. Спектры фотолюминесценции структур с квантовыми точками InP при номинальной толщине осажденного слоя 3 ML, при мощности накачки 5 кВт/см² и различных температурах, К: *1* — 230, *2* — 200, *3* — 170, *4* — 135, *5* — 110.

Рис. 4. Температурная зависимость эффективности люминесценции квантовых точек InP при номинальной толщине осажденного слоя 5 ML для уровня возбуждения 50 BT/см².

рах измерения представлены на рис. 3. При температуре 110 К интенсивность излучения WL превосходит интенсивность излучения QD InP, так как объем WL больше, чем объем QD. С ростом температуры суммарная интенсивность излучения падает, причем доля люминесценции смачивающего слоя заметно уменьшается по сравнению с излучением QD, что связано, по-видимому, с сильной утечкой электронов из WL в матрицу InGaP. Таким образом, с ростом температуры квантовая эффективность люминесценции WL падает значительно быстрее, чем эффективность QD, которая для структуры с номинально осажденными 5 ML InP при 50 Вт/см² приведена на рис. 4. При 77 К эта структура имела 30% внешнюю квантовую эффективность. Такая зависимость говорит о присутствии интенсивных безызлучательных каналов, резко усиливающихся с ростом температуры. Аналогичная зависимость наблюдалась также в [8].

Проведенные оптические исследования гетероструктур InGaP/InP, выращенных методом MOCVD в режиме Странского-Крастанова, выявили особенности люминесценции таких структур. При низком уровне возбуждения и 77 К энергия излучения QD обладает более высокой температурной стабильностью, чем излучение InGaP-матрицы и напряженной OW InP. Из измерений квантовой эффективности излучения этих структур в зависимости от температуры (77-300 К) и уровня возбуждения (0.01–5 кВт/см²) следует, что спектры Φ Л, как правило, являются суперпозицией излучения квантовых точек и смачивающего слоя. Соотношение их интенсивности зависит от мощности накачки и температуры, а длина волны излучения изменяется в пределах 0.65-0.73 мкм. Собственное излучение QD InP можно получить либо при низких уровнях возбуждения и температурах, либо при максимальных (из исследованных)

значениях этих параметров. Таким образом, на основе полученных наноразмерных гетероструктур можно создавать источники излучения, легко перестраиваемые в диапазоне энергий 1.69–1.92 эВ при изменении мощности накачки или температуры.

Работа поддержана Российским фондом фундаментальных исследований (проект 98-02-18266) и программой МНРФ "Физика твердотельных наноструктур", шифр "Квинт".

Список литературы

- F. Houzay, C. Guille, J.M. Moison, P. Henox, F. Barthe. J. Cryst. Growth, 81, 67 (1987).
- [2] J.L. Jimenez, L.R.C. Fonseca, D.J. Brady, J.P. Leburton, D.E. Wohlert, K.Y. Cheng. Appl. Phys. Lett., 71, 3558 (1997).
- [3] A.E. Zhukov, A.R. Kovsh, V.M. Ustinov, Yu.M. Shernyakov, S.S. Mikhrin, N.A. Maleev, E.Yu. Kondrat'eva, D.A. Livshits, M.V. Maximov, B.V. Volovik, D.A. Bedarev, Yu.G. Musikhin, N.N. Ledentsov, P.S. Kop'ev, Zh.I. Alferov, D. Bimberg. IEEE Photon. Technol. Lett., **11**, 1345 (1999).
- [4] O.B. Shchekin, G. Park, D.L. Huffaker, D.G. Deppe. Appl. Phys. Lett., 77, 466 (2000).
- [5] M.K. Zundel, N.Y. Jin-Phillipp, F. Phillipp, K. Eberl, T. Riedl, E. Fehrenbacher, A. Hangleiter. Appl. Phys. Lett., 73, 1784 (1998).
- [6] O.V. Kovalenkov, D.A. Vinokurov, D.A. Livshits, I.S. Tarasov, N.A. Bert, S.G. Konnikov, Zh.I. Alferov. Proc. 23rd Int. Symp. Compound Semicond. (St.Petersburg, 1996) [Inst. Phys. Conf. Ser., N 155, Ch. 3, p. 271].
- [7] Д.А. Винокуров, В.А. Капитонов, О.В. Коваленков, Д.А. Лифшиц, З.Н. Соколова, И.С. Тарасов, Ж.И. Алфёров. ФТП, 33, 858 (1999).
- [8] V. Zwiller, M.-E. Pistol, M.A. Odnoblyudov, L. Samuelson. Abstracts Int. Symp. "Nanostructures: Physics and Technology" (St.Petersburg, 1999) p. 28.

Редактор В.В. Чалдышев

Optical study of InP quantum dots

D.A. Vinokurov, V.A. Kapitonov, D.N. Nikolaev, Z.N. Sokolova, I.S. Tarasov

loffe Physicotechnical Institute, 194021 St.Petersburg, Russia

Abstract A photoluminescent study has been made of selfassembling InP nanoscale islands (quantum dots) embedded in In_{0.49}Ga_{0.51}P matrix grown on GaAs substrate by metal organic vapor phase epitaxy. The dependences of the luminescence efficiency on temperature within 77–300 K range and on the excitation level (0.01–5 kW/cm²) were obtained. It has been shown that the photoluminescent spectra represent a superposition of quantum dots and wetting layer spectra. Their shares depend on the temperature and power level. Emitting wavelength varies throughout the range of 0.65–0.73 μ m. Quantum dots have a high temperature stability of the wavelength, and a high quantum efficiency at low excitation level and at 77 K.