Исследование гетероструктур SiC/(SiC)_{1-x}(AIN)_x методом вольт-фарадных характеристик

© М.К. Курбанов, Б.А. Билалов, Ш.А. Нурмагомедов, Г.К. Сафаралиев

Дагестанский государственный университет, 327025 Махачкала, Россия

(Получена 31 июля 2000 г. Принята к печати 2 августа 2000 г.)

Методом измерения и анализа вольт-фарадных характеристик установлено, что в гетероструктурах *n*-6*H*-SiC/*p*-(SiC)_{1-x}(AlN)_x, полученных сублимационной эпитаксией слоев $(SiC)_{1-x}(AlN)_x$ на подложках 6*H*-SiC, образуются резкие гетеропереходы толщиной ~ 10⁻⁴ см. Из вольт-фарадных характеристик определены основные свойства гетероструктур в зависимости от состава эпитаксиального слоя и температуры.

Введение

Среди твердых растворов на основе карбида кремния наиболее изученной системой является твердый раствор $(SiC)_{1-x}(AlN)_x$, который образует непрерывный ряд с плавным изменением ширины запрещенной зоны от 3.35 до 6.2 эВ и постоянной решетки от a = 3.076 Å, c = 5.048 Å при x = 0 до a = 3.114 Å c = 4.986 Å при x = 1. Переход от непрямозонной к прямозонной структуре происходит при x > 0.6 [1]. В настоящее время также решена проблема управления составом и типом электропроводности этих твердых растворов при их сублимационной эпитаксии [2]. Благодаря высокой теплопроводности, механической, химической и радиационной стойкости они перспективны для приборных структур. Близость параметров решеток и коэффициентов температурного расширения SiC и $(SiC)_{1-x}(AlN)_x$, а также идентичность технологии синтеза позволяют получать гетероструктуры (ГС) SiC/(SiC)_{1-x}(AlN)_x с малым числом дефектов на гетерогранице.

В известной литературе отсутствуют сведения об электростатических параметрах p-n-структур на основе $(SiC)_{1-x}(AlN)_x$. В настоящей работе представлены результаты исследований свойств ГС n-SiC/p-(SiC)_{1-x}(AlN)_x, определенные методом вольт-фарадных характеристик (ВФХ).

Образцы и методика эксперимента

Монокристаллические эпитаксиальные слои (ЭС) твердых растворов $(SiC)_{1-x}(AIN)_x p$ -типа выращивались на подложках SiC политипа 6*H* методом сублимационной эпитаксии при температурах 2300–2550 К и давлении смеси газов азота и аргона от $2 \cdot 10^4$ до $8 \cdot 10^4$ Па из источников, представляющих горячо-прессованные таблетки SiC–AIN [3]. Подложки имели *n*-тип проводимости с $N_d - N_a = 6 \cdot 10^{17} - 3 \cdot 10^{18}$ см⁻³. Толщина ЭС 10–30 мкм, толщина подложек — 400 мкм.

Вольт-фарадные характеристики (ВФХ) гетероструктур n-SiC/p-(SiC)_{x-1}(AlN)_x измерялись на установке, изготовленной на базе автоматического цифрового измерителя E7-8. В основе измерений лежит мостовой метод с фазочувствительными детекторами уравновешивания. Питание моста осуществлялось от внешнего широкодиапазонного генератора ГЗ-49а. Амплитуда синусоидального сигнала не превышала 300 мВ. Измерения проводились по параллельной схеме замещения. Погрешность измерения емкости не превышала 1%. ВФХ измерялись на меза-структурах, изготовленных ионно-плазменным травлением через Аl-маску, напыленную в глубоком вакууме методом термического распыления с вольфрамовой проволоки. Этот слой после термообработки использовался в качестве омического контакта к ЭС $(SiC)_{1-x}(AlN)_x$. На базовый слой (подложку 6*H*-SiC) омический контакт наносили путем вплавления In после электроискровой обработки поверхности. Проведенные измерения на "омичность" металлических контактов дали удовлетворительные результаты. Исследуемые меза-структуры помещались в 2-зондовую ячейку.

Для изучения ВФХ были отобраны p-n-структуры, у которых измеряемая емкость не зависела от частоты до 50 кГц, а построенные в координатах $C^{-2}-U$ вольтфарадные характеристики были линейны в интервале напряжений от -10 В до 0. Кроме того, в отобранных структурах в этом диапазоне напряжений ток утечки не превышал 10^{-5} А.

Результаты и обсуждение

На рис. 1 приведены результаты измерений ВФХ двух гетероструктур с различным содержанием AlN в ЭС, измеренные при комнатной температуре (293 К). Наблюдаемое отклонение отдельных экспериментальных точек от прямой, видимо, связано с незначительной неоднородностью легирования ЭС (SiC)_{1-r}(AlN)_r. Для ГС *n*-6*H*-SiC/*p*-(SiC)_{0.87}(AlN)_{0.13} прямая, экстраполированная до $C^{-2} = 0$, отсекает отрезок, равный 2.95 В, а для ГС *n*-6*H*-SiC/*p*-(SiC)_{0.44}(AlN)_{0.56} — отрезок равный 3.5 В, которые соответствуют диффузионным контактным разностям потенциалов U_d в них. Для сравнения скажем, что в p-n-гомопереходах на базе SiC величина U_d , определенная из ВФХ и вольт-амперных характеристик, составляет примерно 2.7 В [4,5]. Наблюдаемый рост U_d с увеличением концентрации AlN в ЭС $(SiC)_{1-r}(AlN)_r$, вероятно, связан с ростом ширины запрещенной зоны ЭС.

Рис. 1. Вольт-фарадные характеристики двух гетероструктур *n*-6*H*-SiC/*p*-(SiC)_{1-x}(AlN)_x с содержанием AlN *x*: I = 0.13, 2 = 0.56, измеренные при комнатной температуре.

Используя значения U_d , полученные по ВФХ, из выражения

$$\Phi_2 = qU_d + \Phi_2$$

может быть определена работа выхода Φ_2 для слоя p-(SiC)_{1-x}(AlN)_x с различным содержанием AlN. Работа выхода Φ_1 из грани (0001) для 6*H*-SiC при 300 K составляет 4.5 эВ [6]. Значение Φ_2 с ростом концентрации AlN в ЭС увеличивается. Так, например, для p-(SiC)_{0.87}(AlN)_{0.13} $\Phi_2 = 7.45$ эВ, а для p-(SiC)_{0.44}(AlN)_{0.56} — 7.85 эВ.

По наклону ВФХ в координатах $C^{-2}-U$, используя известную формулу [7]

$$\frac{\partial C^{-2}}{\partial U} = \frac{2(\varepsilon_1 N_{d_1} + \varepsilon_2 N_{a_2})}{S^2 q N_{d_1} N_{a_2} \varepsilon_1 \varepsilon_2}$$

определены концентрации примесей ЭС в $(SiC)_{1-x}(AlN)_x$ Для представленных на рис. 1 гетероструктур концентрация примесей азота В подложке 6H-SiC, определенная предварительно по величине N_d-N_a, полученной из ВФХ барьеров Шоттки, составляла $\sim 9 \cdot 10^{17} \, \mathrm{cm}^{-3}$. Низкочастотная относительная диэлектрическая проницаемость ε_1 для 6*H*-SiC при ориентации $E \parallel c$ и T = 300 К равна 10.03 [6]. Значения относительной диэлектрической проницаемости ε_2 твердых растворов $(SiC)_{1-x}(AlN)_x$ определены из фотоэлектрических измерений на контакте металл-(полупроводник (твердый раствор $(SiC)_{1-x}(AlN)_x))$ и при 0.1 < x < 0.6 лежат в пределах $\varepsilon_2 \simeq 9.4-9.8$. При расчетах нами использовалось усредненное значение $\varepsilon_2 = 9.6$. Площадь *p*-*n*-переходов *S* составляла $2 \cdot 10^{-2} \,\mathrm{cm}^2$. Определенная из наклона ВФХ концентрация N_{a_2} в ЭС (SiC)_{0.87}(AlN)_{0.13} равна 9.02 · 10¹⁷ см⁻³, а в (SiC)_{0.44}(AlN)_{0.56} — 7.98 · 10¹⁶ см⁻³. Эти и другие результаты показывают, что с ростом х в слоях $(SiC)_{1-x}(AlN)_x$ концентрация примесей N_a в них уменьшается. Этот вывод подтверждает и тот факт, что при больших концентрацих AlN в ЭС зависимость емкости от напряжения становится более слабой (рис. 1), что свидетельствует о том, что выращенный ЭС является высокоомным и обедненная область расположена главным образом в нем.

На рис. 2 представлены температурные зависимости ВФХ $n-6H-SiC/p-(SiC)_{0.85}(AIN)_{0.15}$, измеренные в интервале 77-418 К. Емкостное напряжение отсечки U_C, найденное экстраполяцией прямых до пересечения с осью напряжений, при 77 К (прямая 1) составляет 3.2 В и с ростом температуры сначала нелинейно, а затем практически линейно уменьшается до 2.65 В при 418 К (прямая 4). Для линейного участка $U_C(T) = U_{C0} - \alpha_C T$ (рис. 2, вставка), где U_{C0} — напряжение, получаемое экстраполяцией $U_C(T)$ к T = 0 K; для данной структуры $U_{C0} = 3.46 \text{ B}, \alpha_C$ — температурный коэффициент напряжения емкостной отсечки равен 2.1 · 10⁻³ В/град. К сожалению, в литературе отсутствуют данные о температурной зависимости ширины запрещенной зоны Е_g твердых растворов $(SiC)_{1-x}(AlN)_x$. Поэтому трудно однозначно утверждать, с чем связана наблюдаемая температурная зависимость U_C, а следовательно, и величины U_d. Тем не менее, зная, что зависимость $U_d(T)$ намного сильнее

Рис. 2. Вольт-фарадные характеристики гетероструктур *n*-6*H*-SiC/*p*-(SiC)_{0.85}(AlN)_{0.15}, измеренные при *T*, К: I - 77, 2 - 273, 3 - 361, 4 - 418. На вставке — температурная зависимость емкостного напряжения отсечки U_C для данной гетероструктуры.

Рис. 3. Зависимости толщины области пространственного заряда W в гетероструктурах *n*-6*H*-SiC/*p*-(SiC)_{0.87}(AlN)_{0.13} от напряжения на структуре: 1 — экспериментальная, 2 — расчетная.

 $E_g(T)$ для структур на основе 6*H*-SiC [8], можно предположить, что зависимость $U_C(T)$ главным образом определяется температурным ходом химического потенциала в *n*- и *p*-области. Определенный вклад вносит также температурная зависимость ширины запрещенной зоны компонентов гетеропары SiC и (SiC)_{1-x}(AlN)_x.

Исследование ВФХ ГС дает возможность определить толщину переходной области W. На рис. 3 представлена зависимость W = f(U), для ГС n-6H-SiC/p-(SiC)_{0.87}(AlN)_{0.13}. Толщина p-n-перехода, определенная из значения емкости при нулевом смещении, составляет $1.2 \cdot 10^{-4}$ см. Сравнение значений толщин, полученных расчетным путем и из ВФХ (рис. 3), показывает, что экспериментально определяемые значения толщины больше, чем расчетные. Это, видимо, связано с влиянием подвижных носителей заряда в p-n-переходе и заряженных состояний на границе раздела на экспериментальные значения емкости.

Для выяснения механизма электрического пробоя ГС наблюдаемого при обратных напряжениях более 25 В, по ВФХ рассчитаны значения максимального электрического поля $E_{\rm M}(U)$ по методике, предложенной в работе [9]. Величина $E_{M}(U)$ в ГС $n-6H-SiC/p-(SiC)_{0.44}(AlN)_{0.56}$ при предпробойных напряжениях составляет порядка 5 · 10⁴ В/см. Такие напряженности недостаточны для ионизации примесей в результате туннелирования, поэтому можно предположить, что в исследованных структурах электрический пробой осуществляется по механизму ударной ионизации.

Заключение

Методом вольт-фарадных характеристик установлено, что в гетероструктурах, полученных методом сублимационной эпитаксии слоев твердых растворов p-(SiC)_{1-x}(AlN)_x на подложках *n*-6*H*-SiC, образуются резкие гетеропереходы. Толщина области объемного заряда составляет $0.5-2 \cdot 10^{-4}$ см. Значение напряжения емкостной отсечки U_C больше 2.9 В и растет с увеличением содержания AlN в эпитаксиальных слоях. Величина U_C имеет температурный коэффициент α_C , который равен $(1-3) \cdot 10^{-3}$ В/град.

Емкостные измерения показывают, что с увеличением содержания AlN в эпитаксиальных слоях $(SiC)_{1-x}(AlN)_x$ концентрация нескомпенсированных примесей N_a в них уменьшается. Из вольт-фарадных характеристик рассчитаны значения максимального электрического поля E_M в гетероструктурах n-SiC/p-(SiC) $_{1-x}(AlN)_x$ в предпробойной области. Полученные значения $E_M(U) \simeq 10^4$ В/см указывают на механизм ударной ионизации в области объемного заряда при электрическом пробое гетероструктур.

Список литературы

- А.П. Дмитриев, Н.В. Евлахов, А.С. Фурман. ФТП, 30 (1), 106 (1996).
- [2] Г.К. Сафаралиев, М.К. Курбанов, Н.В. Офицерова, Ю.М. Таиров. Изв. РАН. Неорг. матер., № 6 (1995).
- [3] Ш.А. Нурмагомедов, А.Н. Пихтин, В.Н. Резбегаев, Г.К. Сафаралиев, Ю.М. Таиров, В.Ф. Цветков. Письма ЖТФ, 12 (17), 1043 (1986).
- [4] А.А. Лебедев, Д.В. Давыдов, К.И. Игнатьев. ФТП, 30 (10), 1865 (1996).
- [5] М.М. Аникин, А.А. Лебедев, И.В. Попов, В.П. Растегаев, А.Л. Сыркин, Б.В. Царенков, В.Е. Челноков. ФТП, 22 (1), 133 (1987).
- [6] Справочник по электротехническим материалам, под ред. Ю.В. Корицкого, В.В. Пасынкова, Б.М. Тареева (Л., Энергоатомиздат, 1988) т. 3.
- [7] А. Милнс, Д. Фойхт. Гетеропереходы и переходы металл-полупроводник (М., Мир, 1975).
- [8] А.Н. Пихтин, Д.А. Яськов. ФТП, 12 (6), 1597 (1986).
- [9] Л.С. Берман. Емкостные методы исследования полупроводников (Л., 1972).

Редактор Т.А. Полянская

Investigation of SiC/(SiC) $_{1-x}$ (AIN) $_x$ heterostructures by capacity-voltage method

M.K. Kurbanov, B.A. Bilalov, Sh.A. Nurmagomedov, G.K. Safaraliev

Dagestan state university 367025 Makhachkala, Russia

Abstract It has been established using the capacity-voltage method that in *n*-6*H*-SiC/*p*-(SiC)_{1-x}(AlN)_x heterostructures, which were obtained by sublimation epitaxy of $(SiC)_{1-x}(AlN)_x$ on 6*H*-SiC substrates, occurrence of sharp heterojunctions having the thickness of ~ $1 \cdot 10^{-4}$ sm took place. By the capacity-voltage characteristics method, the basic properties of heterostructures were found as functions of the epitaxial layer composition and temperature.