Туннельно-избыточные токи в гетероструктурах *p*-Si-*n*-3*C*-SiC

© С.Ж. Каражанов[¶], И.Г. Атабаев, Т.М. Салиев, Э.В. Канаки, Е. Джаксимов

Физико-технический институт Академии наук Республики Узбекистан, 700084 Ташкент, Узбекистан

(Получена 31 мая 2000 г. Принята к печати 9 июня 2000 г.)

Сделана попытка интерпретации вольт-амперной характеристики гетероструктуры p-Si-n-SiC в рамках туннельно-избыточного механизма. Проведена оценка ширины области объемного заряда W и длины туннелирования λ . Показано, что $W \gg \lambda$ и, несмотря на это, транспорт тока через исследуемую гетероструктуру подчиняется туннельному механизму. Найдены характеристическая энергия туннелирования $\varepsilon = 57$ мэВ, температурный коэффициент тока насыщения и коэффициент разреженности барьера.

Карбид кремния является одним из материалов, обладающих чрезвычайно широким комплексом полезных свойств: электротехнических, антикоррозионных, прочностных и др. В последнее время повысился интерес к этому материалу и структурам на его основе в связи с его излучательной способностью в области экситонного спектра [1–3] при освещении и пропускании тока.

В данной работе исследован механизм токопрохождения через гетероструктуры *p*-Si-*n*-3*C*-SiC. Пленки 3*C*-SiC были выращены методом парогазовой химической эпитаксии путем термического разложения метилтрихлорсилана. Как известно, при этом методе выращивания гетероструктуры имеют четкую гетерограницу [4].

исследования вольт-амперных характерис-Для тик (BAX) гетеропереходов *p*-Si-*n*-3C-SiC нами были взяты в качестве подложек пластины в кремния КДБ-20 (111), толщина слоев SiC составляла 5-15 мкм. Вольтьемкостная характеристка такой структуры, при обратных измеренная на частоте 10 кГц, смещениях до 1.5 В имеет вид прямой линии в координатах $C^{-2} = f(V)$, а наклон этой прямой соответствует концентрации нескомпенсированной примеси $N = 10^{15} \, \text{см}^{-3}$, что согласуется с паспортным значением концентрации акцепторов в подложке кремния $N = 7 \cdot 10^{14} \, \mathrm{cm}^{-3}$.

Проведено измерение BAX гетероструктур p-Si-n-3C-SiC в прямом и обратном направлениях (см. рисунок). Анализируя рисунок, нетрудно заметить, что ВАХ в прямом направлении в широком интервале тока, напряжения и температуры представляет собой прямые линии, что указывает на туннельный характер транспорта тока. Ранее нами туннельный характер транспорта тока связывался с наличием на гетерогранице тонкого слоя окиси кремния, следы которого были обнаружены методом масс-спектрометрии вторичных ионов (ВИМС) [5]. Однако в этом случае необходимо наличие очень тонкого сплошного слоя окиси кремния, что крайне маловероятно при выращивании в хлорсодержащей газовой среде. Напомним, что рост идет путем термического разложения метилтрихлорсилана.

Механизм токопрохождения в аналогичных нашим структурах Si-3C-SiC подробно исследован в работе [6]. Высказано предположение, что наиболее вероятной природой прямых токов является рекомбинация носителей заряда в области пространственного заряда (ОПЗ) через уровни ловушек, смещенных более чем на 10kT относительно середины запрещенной зоны, согласно модели предложенной Долегой [7]. Также проведена оценка поверхностной концентрации этих ловушек $N_t = 10^{11} - 10^{12}$ см⁻² (при пересчете на "объемную" концентрацию $N_t = 10^{16} - 10^{18}$ см⁻³). Вместе с тем в этой же работе указано, что попытка обнаружить глубокие центры в ОПЗ гетеропереходов методом релаксационной спектроскопии глубоких уровней дала отрицательный результат. Таким образом, вывод о рекомбинационной природе прямых токов представляется не вполне убедительным.

Для изучения аналогичной ВАХ в [8-14] предложен механизм туннельно-избыточного тока, который получил подтверждение в огромном количестве гомо-, гетеро- и m-s-структур. Более подробно об этом можно прочесть в [8]. Согласно этому механизму, в запрещенной зоне вблизи гетерограницы имеется размытый спектр энергетических уровней, обеспечивающих многоступенчатое туннелирование.

Нами ранее [4] было показано, что пленки карбида кремния, выращенные на подложках кремния, имеют переходную область SiC с большой концентрацией структурных дефектов, возникающих из-за большого различия в параметрах решетки Si и SiC. Именно в связи с вышесказанным здесь сделана попытка интерпретации BAX p-Si-n-3C-SiC в рамках механизма [8–14], согласно которому зависимость тока (I) от напряжения (V) можно описать выражением

$$I = I_0 \exp(qV/\varepsilon), \tag{1}$$

где предэкспоненциальный множитель I_0 изменяется с температурой (T) в соответствии с соотношением

$$I_0 = I_{00} \exp(aT).$$
 (2)

Здесь q — заряд электрона, a — коэффициент пропорциональности размерности [K⁻¹]. Характеристическая энергия туннелирования ε , найденная из рисунка с помощью формулы (1), равна $\varepsilon = 57$ мэВ. Отметим, что значение ε лежит в пределах, указанных в [8].

[¶] E-mail: atvi@physic.uzsci.net

Прямые (1, 2, 3) и обратные (1', 2', 3') ВАХ структур *p*-Si-*n*-3*C*-SiC при *T*, °C: *1*, 1' - 15; *2*, 2' - 130; *3*, 3' - 196.

Из ВАХ также найден температурный коэффициент *a* тока насыщения I_0 и предэкспоненциальный множитель I_{00} , которые соответственно равны $a = 0.05 \,\mathrm{K}^{-1}$ и $I_{00} = 2 \cdot 10^{-9} \,\mathrm{A}$. Далее, проведена оценка ширины области и объемного заряда *W*

$$W = \left[\frac{2\kappa_0(\kappa/N)_{\text{eff}}(U_s - U)}{q}\right]^{1/2},\qquad(3)$$

согласно которой W = 1.05 мкм, что согласуется с данными [8]. Здесь κ — диэлектрическая проницаемость, которая для кремния равна $\kappa_p = 11.2$ и $\kappa_n = 10.2$ [15] для SiC. Отношение $(\kappa/N)_{\text{eff}}$ оценено по формуле в соответствии с [8]

$$(\kappa/N)_{\text{eff}} = \frac{\kappa_n \kappa_p (n_n + p_p)^2}{n_n p_p (n_n \kappa_n + p_p \kappa_p)},$$
(4)

где n_n и p_p — концентрация основных носителей заряда в *n*-SiC и *p*-Si, которые соответственно равны $n_n = 10^{17}$ и $p_p = 7 \cdot 10^{14}$ см⁻³. Величину qU_s оценили по формуле

$$qU_s = E_g^{\rm Si} - \mu_p^{\rm Si} - \mu_n^{\rm SiC}, \qquad (5)$$

где E_g^{Si} — ширина запрещенной зоны кремния; $\mu_p^{\text{Si}} = kT \ln(N_c/p_p)$ и $\mu_n^{\text{SiC}} = kT \ln(N_v/n_n)$ — химические потенциалы в кремнии и карбиде кремния соответственно; $N_c = 2 \cdot 10^{19} (T/300)^{3/2}$ — плотность квантовых состояний в зоне проводимости карбида кремния; $N_v = 3.4 \cdot 10^{19} (T/300)^{3/2}$ — плотность состояний дырок в валентной зоне. Выражение для N_0 получено, полагая эффективную массу электронов m_n^* и дырок m_p^* равными $m_n^* = 0.6m_0$ и $m_p^* = 1.2m_0$ [15], где m_0 — масса покоя электрона. Далее, нами проведена оценка длины туннелирования λ [8]

$$\lambda = h \left(2m_n^* q (U_s - U) \right)^{1/2}, \tag{6}$$

которая дает $\lambda = 2.6$ нм. Сравнение значений W и λ показало, что $W \gg \lambda$. Это означает, что предполагаемое туннелирование через гетеропереход имеет увеличенную вероятность. При этом в запрещенной зоне имеется размытый спектр энергетических уровней,

$$\varepsilon_t = \frac{hq}{2} \left[\frac{(\kappa/N)_{\text{eff}}}{\kappa_0 m_n^*} \right]^{1/2}$$

который обеспечивает многоступенчатое туннелирование. Согласно [8], такой процесс туннелирования можно описать с помощью масштабного коэффициента разреженности барьера r, увеличивающего длину туннелирования λ и характеристическую энергию ε по сравнению с теоретическим значением ε_t .

Оценка значения ε_t показала, что $\varepsilon_t = 1.16 \text{ мэВ}$, что в 49–50 раз меньше, чем ε_t . Таким образом, феноменологический коэффициент разреженности барьера равен $r = \varepsilon/\varepsilon_i = 49-50$ и во столько же раз растет вероятность туннелирования.

Заключение

Таким образом, исследована ВАХ гетероструктуры *p*-SiC–*n*-SiC. Проведена оценка ширины области объемного заряда W и длины туннелирования. Показано, что $W \gg \lambda$ и, несмотря на это, транспорт тока через исследуемую гетероструктуру подчиняется туннельному механизму, модифицированному в [8]. Найдена характеристическая энергия туннелирования $\varepsilon = 57$ мэВ, температурный коэффициент тока насыщения и коэффициент разреженности барьера.

Список литературы

- М.А. Кадыров, Н.В. Кунина, Х.А. Шамуратов, Л.В. Шаронова, А.Я. Шик, Ю.В. Шмарцев. ФТП, 14 (8), 942 (1980).
- [2] Л.И. Бережинский, С.И. Власкина, Ю.В. Калиниченко, В.Е. Родионов, Х.А. Шамуратов. Укр. физ. журн., 30, 513 (1991).
- [3] Л.И. Бережинский, С.И. Власкина, Ф.К. Джапарова, Н.В. Катенюк, В.Е. Родионов. Укр. физ. журн., 37, 565 (1992).
- [4] Х.А. Шамуратов, Т.М. Салиев. Укр. физ. журн., вып. 3, 92 (1991).
- [5] Т.М. Салиев. Автореф. канд. дис. (Ташкент, 1994).
- [6] А.С. Зубрилов. ФТП, **28** (10), 1742 (1994).
- [7] U. Dolega. Zs. Naturforsch., 18a, 653 (1963).
- [8] В.В. Евстропов, Ю.В. Жиляев, М. Джумаев, Н. Назаров. ФТП, **31** (2), 152 (1997).

- [9] В.В. Евстропов, Ю.В. Жиляев, Н. Назаров, В.В. Россин, Л.М. Федоров, Ю.М. Шерняков. Письма ЖТФ, 19, 61 (1993).
- [10] В.В. Евстропов, Ю.В. Жиляев, Н. Назаров, Д.В. Сергеев, Л.М. Федоров. ЖТФ, 63, 41 (1993).
- [11] В.В. Евстропов, Ю.В. Жиляев, Н. Назаров, Д.В. Сергеев, Л.М. Федоров, Ю.М. Шерняков. ФТП, 27, 1319 (1993).
- [12] В.В. Евстропов, Ю.В. Жиляев, Н. Назаров, Д.В. Сергеев, Л.М. Федоров. ФТП, 27, 688 (1993).
- [13] В.В. Евстропов, Ю.В. Жиляев, Н. Назаров, Ю.Г. Садофьев, А.Н. Топчий, Н.Н. Фалеев, Л.М. Федоров, Ю.М. Шерняков. ФТП, 29, 385 (1995).
- [14] А.В. Бобров, В.В. Евстропов, Ю.В. Жиляев, М.Г. Мынбаева, Н. Назаров. Письма ЖТФ, **19**, 30 (1993).
- [15] С.А. Добролеж, С.М. Зубкова, В.А. Кравец, В.З. Смушкевич, К.Б. Толпыго, И.Н. Францевич. *Карбид кремния* (Киев, Гос. изд-во техн. лит. УССР, 1963) с. 316.

Редактор В.В. Чалдышев

Volt-ampere characteristic of a *p*-Si–*n*-3*C*-SiC heterostructure

S.Zh. Karazhanov, I.G. Atabaev, T.M. Saliev, E.V. Kanaki, E. Djakeimov

Physicotechnical Institute of Republic Uzbekistan, 700084 Tashkent, Uzbekistan

Abstract Volt-ampere characteristic of a *p*-Si–*n*-SiC heterostructure is investigated. Evaluation of the *W* width and the finding of tunneling length λ is done. It is shown, that $W \gg \lambda$ and the transport of the current through the heterostructure goes by tunnel meachanism. Characteristic energy of tunneling $\varepsilon = 57$ meV, temperature factor of a saturated current (*a*) and factor of the barrier (*r*) are obtained.