Основные принципы послеростового отжига слитка CdTe: Cl для получения полуизолирующих кристаллов

© О.А. Матвеев[¶], А.И. Терентьев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 26 апреля 2000 г. Принята к печати 28 апреля 2000 г.)

Исследован процесс отжига слитка CdTe: Cl при охлаждении его после выращивания. Отжиг производился в 2 этапа: высокотемпературный этап, когда при термодинамическом равновесии кристалла с паром летучих компонентов устанавливается примерное равенство концентраций хлора и вакансий кадмия, и низкотемпературный этап, когда заряженные дефекты взаимодействуют с образованием нейтральных ассоциатов. Определены необходимые для получения полуизолирующего кристалла концентрации легирования хлором для различных скоростей охлаждения слитка на высокотемпературном этапе. Определена зависимость концентрации примеси [Cl⁺_{Te}] в слитке от температуры его отжига на высокотемпературном этапе. Получены значения времен жизни и дрейфовых подвижностей носителей заряда в кристалле в зависимости от температуры и от давления паров кадмия при послеростовом отжиге слитка.

Низкая проводимость кристаллов CdTe, высокие времена жизни и подвижности свободных носителей заряда, необходимые для детекторов ядерного излучения [1,2], достигаются, как известно, в материале, легированном хлором, вследствие эффекта самокомпенсации заряженных атомных дефектов [3–6].

Самокомпенсация ранее изучалась нами при отжиге образцов CdTe: Cl (размер $3 \times 3 \times 12$ мм³), имитирующем охлаждение слитка после выращивания кристалла при температуре $T \lesssim 980^{\circ}$ С [7,8]. Отжиг проводился под регулируемым давлением паров кадмия и теллура. В результате отжига были получены образцы полуизолирующие, с проводимостью $\sigma \approx 10^{-10} \, \mathrm{Om}^{-1} \cdot \mathrm{cm}^{-1}$, с низкой концентрацией свободных носителей заряда $p(n) = (10^7 - 10^8) \, \text{см}^{-3}$. Однако произведения подвижности и времени жизни электронов и дырок на отжигаемых образцах $\mu_e \tau_e \approx 10^{-4} \, {
m cm}^2 \cdot {
m B}^{-1}, \, \mu_h \tau_h \approx 10^{-5} \, {
m cm}^2 \cdot {
m B}^{-1}$ были существенно ниже, чем в слитке после выращивания: $\mu_e \tau_e \approx 10^{-3} \,\mathrm{cm}^2 \cdot \mathrm{B}^{-1}, \ \mu_h \tau_h \approx 10^{-4} \,\mathrm{cm}^2 \cdot \mathrm{B}^{-1}.$ К сожалению, в этих работах отжиги не могли быть проведены при максимально высоких температурах, начиная с которых происходит послеростовой отжиг слитка, а также в области низких давлений пара кадмия $P_{\rm Cd} \rightarrow P_{\rm Cd}^{\rm min}$, поскольку в этих условиях сублимация материала в холодную часть ампулы приводила не только к изменениям на поверхности, но и в объеме образца, что было заметно по неоднородной электропроводности образца.

В данной работе приводятся результаты исследования самокомпенсации при отжиге слитка непосредственно после его выращивания. При этом отжиг начинается практически с температуры кристаллизации соединения.

Слитки CdTe:Cl (весом 0.5-1.0 кг) выращиваются методом горизонтальной направленной кристаллизации под управляемым давлением пара кадмия [9]. Материал легируется хлором при его выращивании в концентрации N(Cl). При послеростовом охлаждении осуществляется отжиг слитка, в процессе которого создают-

ся условия для самокомпенсации заряженных атомных дефектов в кристалле, начиная с максимально высоких температур. Самокомпенсация осуществляется на двух этапах отжига. Первый этап — высокотемпературный отжиг ($T_{\rm ann} = 1070 - 800^{\circ}$ С), когда растворимость собственных атомных дефектов велика [10] и можно получить высокую концентрацию вакансий кадмия $[V_{
m Cd}^{-2}] + [V_{
m Cd}^{-1}] \gtrsim [{
m Cl}_{
m Te}^+]$, которая также должна быть больше концентрации неконтролируемых примесей. При этих температурах ассоциация доноров и акцепторов мала и ею можно пренебречь [3,10]. Второй этап низкотемпературный отжиг ($T_{ann} = 800-400^{\circ}C$). Здесь главным является взаимодействие заряженных дефектов с образованием незаряженных ассоциатов: $(V_{Cd}^{-2}2Cl_{Te}^{+})^{0}$, $(V_{Cd}^{-}Cl_{Te}^{+})^{0}$, $(A^{-}D^{+})^{0}$. В кристалле остаются несвязанные в нейтральные ассоциаты основные дефекты: $V_{\rm Cd}^{-2}$, $(V_{\rm Cd}^{-2}{\rm Cl}_{\rm Te}^{+})^{-}$ и другие, например $(V_{\rm Cd}^{-2}D^{+})^{-}$, $(A^{-2}{\rm Cl}_{\rm Te}^{+})^{-}$ (где D и A — фоновые примеси доноров и акцепторов), дающие в запрещенной зоне уровни энергии $E_v + 0.9$ эВ, $E_v + 0.14$ эВ, $E_v + (0.5 - 0.9)$ эВ [11]. Концентрации этих дефектов определяют величины подвижностей и времен жизни носителей заряда в кристалле. Здесь и в дальнейшем не указывается вакансия $V_{\rm Cd}^{-1}$, которая присутствует в значительно меньшем количестве по сравнению с вакансией $V_{\rm Cd}^{-2}$; доминирование дефекта $V_{\rm Cd}^{-2}$ является определяющим для самокомпенсации в CdTe [6,10].

Рассмотрим условия самокомпенсации при отжиге слитка на высокотемпературном этапе. При длительной выдержке слитка при постоянной температуре в течение t = (5-15) ч в результате термодинамического равновесия между СdTe и давлением паров $P_{\rm Cd}$ в ампуле устанавливается соответствующий состав кристалла, т.е. устанавливается необходимая концентрация вакансий кадмия. Основным условием осуществимости процесса самокомпенсации является необходимая растворимость $V_{\rm Cd}$ при температурах отжига слитка. Температура $T_{\rm ann} = 800^{\circ}$ С является наименьшей, при которой возможно получить достаточно высокую концентрацию дефектов $[V_{\rm Cd}^{-2}] \gtrsim [{\rm Cl}_{\rm Te}]$. При более низких значениях

[¶] E-mail: Oleg.matveev@pop.ioffe.rssi.ru

 $T_{\rm ann}$ в условиях равновесия кристалл-газ растворимость акцепторных дефектов $V_{\rm Cd}^{-2}$ даже при самых малых давлениях паров $P_{\rm Cd} \approx P_{\rm Cd}^{\min}$ недостаточна для самокомпенсации заряженных дефектов.

Следующим условием осуществления самокомпенсации является сохранение соотношения концентраций доноров и акцепторов $[V_{\rm Cd}^{-2}] \gtrsim [{\rm Cl}_{\rm Te}^+]$ при охлаждении на высокотемпературном этапе отжига. При этом экспериментально обнаружено, что получение полуизолирующего самокомпенсированного материала зависит от концентрации хлора. Если концентрация дефектов [Cl_{Ta}] при охлаждении слитка будет превышать концентрацию вакансий кадмия, то получается материал высокой проводимости, $n \approx 10^{16} \, {\rm cm}^{-3}$. При уменьшении температуры кристалла CdTe уменьшается растворимость и хлора, и вакансий кадмия [12,13]. Следовательно, при охлаждении слитков могут реализоваться два варианта. Первый — когда уменьшение концентраций $[V_{Cd}^{-2}]$ и [Cl⁺_{Te}] происходит примерно одинаково, соотношение $[V_{\rm Cd}^{-2}] \gtrsim [{\rm Cl}_{\rm Te}^+]$ сохраняется и получается полуизолирующий материал. И второй вариант, когда соотношение концентраций изменяется таким образом, что становится $[Cl_{Te}^+] > [V_{Cd}^{-2}]$ и получается материал высокой проводимости.

Результаты получения CdTe полуизолирующего или высокой проводимости в зависимости от концентрации хлора N(Cl) и скорости охлаждения слитка (v_{CdTe}) на высокотемпературном этапе показаны на рис. 1. Концентрация N(Cl) включает в себя хлор, растворенный в слитке CdTe, — электрозаряженный (Cl_{Te}) и хлор, находящийся на границах зерен, а также хлор, заполняющий газовое пространство ампулы, адсорбируемый графитовым покрытием ампулы и контейнера, и т.д. Можно считать, что при соблюдении одинаковых условий опыта изменение N(Cl) будет приводить соответственно к такому же изменению концентрации хлора непосредственно в кристалле. Нами использовались концентрации N(Cl) от 2 · 10¹⁸ см⁻³ — наименьшей величины, необходимой для самокомпенсации в кристалле при выращивании CdTe из расплава [14], до $N(Cl) \approx 2 \cdot 10^{19} \,\mathrm{cm}^{-3}$, при которой наблюдается выделение CdCl₂ на границах зерен [15]. Для получения полуизолирующих кристаллов скорость охлаждения слитка должна быть такой, чтобы соотношение концентраций дефектов $[Cl_{Te}^+] \approx [V_{Cd}^{-2}]$ не нарушалось на всем высокотемпературном этапе отжига. Поле на рис. 1 разделяется кривой на 2 области, отражающие два варианта соотношений между концентрациями: $[V_{
m Cd}^{-2}] \geq [{
m Cl}_{
m Te}^+]$ и $[{
m Cl}_{
m Te}^+] > [V_{
m Cd}^{-2}]$. Полуизолирующий материал получается во всем интервале легирования $N(\text{Cl}) = 2 \cdot 10^{18} - 2 \cdot 10^{19} \,\text{см}^{-3}$, когда $v_{\text{CdTe}} = 2 \,\text{K/ч}$ (см. рис. 1). При более высоких скоростях охлаждения слитка происходит сужение этой области со стороны высоких концентраций хлора, когда получается материал высокой проводимости (область В на рис. 1). При самых высоких скоростях роста v_{CdTe} = 48 K/ч полуизолирующий кристалл получается уже только для самых малых концентраций $N(Cl) = (2-4) \cdot 10^{18} \text{ см}^{-3}$.

Рис. 1. Области низкой (A) и высокой (B) проводимости кристаллов CdTe:Cl в зависимости от уровня легирования кристалла хлором и от различных скоростей охлаждения слитка (v_{CdTe}) в интервале температур 1070–900°C. Области A и B соответствуют концентрациям: $A - p \approx 10^8 \text{ см}^{-3}$, $B - n \approx 10^{16} \text{ см}^{-3}$. Обозначения: I — полуизолированный CdTe, 2 — CdTe высокой проводимости.

В условиях отжига, отраженных на рис. 1 областью высокой проводимости *B* (незаштрихованное поле рисунка), большие скорости охлаждения при высоких величинах содержания хлора в слитке не позволяют сохранять равенство концентрации хлора и вакансий кадмия. Это вызвано тем, что при быстром снижении температуры не успевает, из-за низкого коэффициента диффузии хлора (по сравнению с вакансией кадмия) [13,16], устанавливаться концентрация [Cl⁺_{Te}], соответствующая равновесной его растворимости. Вследствие этого примесь Cl⁺_{Te} может оказаться в кристалле в большей концентрации, чем вакансии V_{Cd}^{-2} , что и определяет получение материала с $n \approx 10^{16}$ см⁻³.

Таким образом, определены условия осуществления самокомпенсации в CdTe: Cl путем отжига слитка на всем высокотемпературном интервале охлаждения после выращивания кристалла в широком интервале легирования и скоростей охлаждения слитка.

Отжиг слитка на низкотемпературном этапе проводится также в соответствии с требованиями осуществления самокомпенсации. На этом этапе охлаждение слитка проводится с такой экспериментально подобранной, достаточно высокой скоростью v = 50-80 K/ч, что в

объеме его не успевает устанавливаться соответствующая этим температурам, 800-400°С, низкая концентрация вакансий кадмия [17,18]. Таким образом не нарушается достигнутое на высокотемпературном этапе соответствие концентраций заряженных дефектов. В то же время эта скорость охлаждения вполне достаточна, чтобы обеспечить образование ассоциатов доноров Cl_{те} с акцепторами $V_{\rm Cd}^{-2}$, т.е. чтобы реализовалась "самоочистка" в кристалле [5]. Образование ассоциатов происходит при миграции дефектов друг к другу. Оценка вероятности образования ассоциатов производится по механизму случайных блужданий [19]. Вероятность того, что переход дефекта приведет его к "стоку" (к образованию ассоциата), приблизительно равна вероятности того, что узел, в который попадает дефект, является стоком. Эта вероятность равна атомной доле стоков С. В нашем случае

$$C \approx \frac{[\text{Cl}_{\text{Te}}^{1}]}{N_{0}} \approx \frac{[V_{\text{Cd}}^{-2}]}{N_{0}} \approx \frac{10^{16} \text{ cm}^{-3}}{10^{22} \text{ cm}^{-3}} = 10^{-6},$$

где N_0 — концентрация атомов в см³. Поэтому среднее число переходов, необходимых для попадания в сток, приблизительно равно $\bar{n} \approx 1/C = 10^6$. Для определения времени завершения процесса образования ассоциатов необходимо оценить постоянную времени спада концентраций не провзаимодействующих дефектов ($\bar{\tau}$). Это можно вычислить с помощью теории диффузии: $\bar{n} = z \bar{\nu} \bar{\tau}$, где z = 4 — координационное число, $\bar{\nu} = D/a^2\gamma$ — средняя частота скачков в направлении к стоку и соответствует коэффициенту диффузии D перемещающегося дефекта, $\gamma = 1$ для кубических решеток, $a = 2.5 \cdot 10^{-8} \, \text{см}$ — межатомное расстояние в CdTe. Отсюда следует $\bar{\tau} \approx 1.6 \cdot 10^{-10}/D$. Для крайних значений температур второго этапа отжига 400°С и 800°С коэффициенты диффузии перемещающихся дефектов составляют [13,16]

И

$$D(\text{Cl}) = 10^{-9} \,\text{cm}^2 \cdot \text{c}^{-1}, \quad D(V_{\text{Cd}}) = 2 \cdot 10^{-8} \,\text{cm}^2 \cdot \text{c}^{-1}$$

 $D(\text{Cl}) = 10^{-11} \text{ cm}^2 \cdot \text{c}^{-1}, \quad D(V_{\text{Cd}}) = 10^{-10} \text{ cm}^2 \cdot \text{c}^{-1}$

соответственно. Выбранное в эксперименте время охлаждения 6 ч составляет $\sim 10^3 \bar{\tau}$ даже при самом малом коэффициенте диффузии *D*, и вследствие этого процесс ассоциации дефектов можно считать завершенным.

Поскольку для получения полуизолирующих кристаллов необходимо на двух стадиях отжига соблюдать соотношение $[\mathrm{Cl}_{\mathrm{Te}}^+] \approx [V_{\mathrm{Cd}}^{-2}]$, важно знать концентрацию хлора непосредственно в кристалле и температурное ее изменение с тем, чтобы обоснованно задавать концентрацию $[V_{\mathrm{Cd}}^{-2}]$ с помощью поддержания давления P_{Cd} .

Содержание хлора в слитке для разных температур отжига было установлено методами масс-спектрального, атомно-сорбционного анализов и косвенным путем при измерении эффекта Холла на специально отожженных монокристаллических образцах (рис. 2). Посредством измерения эдс Холла определялась концентрация

Рис. 2. Концентрация хлора N(Cl) в слитке CdTe:Cl в зависимости от температуры отжига T_{ann} , определенная методами: 1 — масс-спектрального анализа, 2 — атомно-сорбционного анализа, 3 — по данным измерений эффекта Холла.

свободных носителей, соответствующая концентрации хлора (мелкого донора) $n = [\text{Cl}_{\text{Te}}^+]$ [10]. Хлор из связанных состояний $(V_{\text{Cd}}^{-2}2 \,\text{Cl}_{\text{Te}}^+)^0$, $(A^- \,\text{Cl}_{\text{Te}}^+)^0$ переводился в донорное отжигом кристалла при высоких давлениях P_{Cd} [7]. Результаты прямого и косвенного методов показывают одинаковый характер зависимости концентрации хлора в слитке CdTe от температуры отжига в условиях послеростового охлаждения слитка. Количество хлора, определенное методом измерения эдс Холла наименышее по сравнению с другими методами анализа, так как в нем учитываются только электрозаряженные автономные дефекты Cl_{Te}^+ .

На рис. З показаны зависимости концентраций носителей заряда n, p от давления $P_{\rm Cd}$ для двух температур отжига. Видно, что при больших давлениях $P_{\rm Cd}$ величина n достигает значений 10^{16} см⁻³ вследствие того, что при этом устанавливается соотношение $[{\rm Cl}_{\rm Te}^+] > [V_{\rm Cd}^{-2}]$. Дефекту ${\rm Cl}_{\rm Te}^+$ соответствует мелкий донорный уровень в запрещенной зоне $E_c = 0.01$ эВ, поэтому его избыток приводит к быстрому росту n в кристалле. Дефект $V_{\rm Cd}^{-2}$ и ассоциаты с ним дают глубокие уровни энергии $E_v + (0.5-0.9)$ эВ, поэтому рост p с уменьшением давления $P_{\rm Cd}$ также наблюдается, но он происходит значительно медленнее и p возрастает только до 10^9 см⁻³. Зависимости n, p от $P_{\rm Cd}$ для температур отжига 900 и 1070°C удивительно похожи по форме при практически одинаковых концентрациях свободных носителей

Рис. 3. Зависимости концентрации свободных носителей заряда (n, p) от давления пара кадмия (P_{Cd}) для двух температур отжига слитка CdTe: Cl T_{ann} , °C: 1 - 900, 2 - 1070.

заряда. Минимум зависимостей n, p от давления P_{Cd} достоверно характеризует наибольшую степень самокомпенсации $p(n)/[Cl_{Te}^+]$, когда концентрация доноров равна концентрации акцепторов $[Cl_{Te}^+] = [V_{Cd}^{-2}]$. При этом величины концентраций дефектов $[Cl_{Te}^+], [V_{Cd}^{-2}]$ — разные для разных температур отжига на высокотемпературном его этапе и после ассоциации основного количества дефектов на низкотемпературном этапе. Это должно проявиться в рассеянии носителей заряда — при измерении дрейфовой подвижности и на их рекомбинации — при измерении времен жизни.

Поэтому в работе было проведено изучение этих, как наиболее чувствительных к завершенности процесса отжига, параметров кристалла (μ_e , μ_h , τ_e , τ_h) в зависимости от температуры и от $P_{\rm Cd}$ при отжигах слитков. Эти зависимости получены на кристаллах с концентрацией дырок $p = (10^8 - 10^9)$ см⁻³ и с наилучшими произведениями $\mu \tau$ для носителей заряда, поскольку для таких кристаллов характерно малое содержание несвязанных в ассоциат вакансий $V_{\rm Cd}^{-2}$, имеющих глубокий уровень в запрещенной зоне [11].

На рис. 4 представлена зависимость дрейфовой подвижности электронов и дырок от температуры отжига слитка. Видно, что высокие подвижности как электронов, так и дырок достигаются в слитках при относительно низких температурах $T_{\rm ann} = 800 - 900^{\circ}$ С, т.е. подвижности достигают своей практически предельной величины при нижней температуре высокотемпературного этапа отжига слитка. В полуизолирующем CdTe: Cl подвижность носителей заряда определяется также деформациями и неоднородностями, которые ограничивают объем проводящей части кристалла, либо вызывают дополнительное рассеяние [20]. При более низких температурах отжига растворимость заряженных атомных дефектов уменьшается. Это приводит к уменьшению неоднородностей и нейтральных скоплений примесей и дефектов структуры, вызывающих рассеяние носителей заряда. Значение τ_e тоже возрастает при понижении температуры отжига кристалла (рис. 5, кривая 1), как и $\mu_{e,h}$, видимо на том же основании. На этом же рисунке (кривая 2) видно, что время жизни дырок увеличивается при повышении температуры отжига кристалла. Повышение температуры T_{ann} приводит к увеличению растворимости V_{Cd}^{-2} , как вообще, так и по сравнению с вакансиями $V_{\rm Cd}^{-1}$ [6,10]. Последнее способствует более полной ассоциации этих дефектов в виде $(V_{Cd}^{-2}2 \operatorname{Cl}_{\operatorname{Te}}^+)^0$ [3]. Такое уменьшение содержания в кристалле дефектов V_{Cd}^{-2} приводит к снижению концентрации глубоких уровней

Рис. 4. Зависимости дрейфовой подвижности электронов (1) и дырок (2) от температуры отжига слитка CdTe: Cl T_{ann}.

Рис. 5. Зависимости времени жизни электронов (τ_e, I) и дырок $(\tau_h, 2)$ от температуры отжига слитка CdTe:Cl T_{ann} .

Рис. 6. Зависимости дрейфовой подвижности (1) и времени жизни (2) дырок от давления паров кадмия P_{Cd} при отжиге слитка CdTe:Cl при температуре T_{ann} , °C: A - 900, B - 1070.

в запрещенной зоне и соответственно увеличению времени жизни дырок. По-видимому, уменьшение концентрации $[V_{\rm Cd}^{-2}]$ оказывает на время жизни дырок τ_h более сильное воздействие, чем зависимость от деформаций структуры и неоднородностей в распределении дефектов, определяющих время τ_e .

Таким образом, достижение необходимых величин τ_e , τ_h требует компромиссного выбора температур отжига слитка на его высокотемпературном этапе. Эти "ножницы" (рис. 5) требуют очень осторожного выбора температур отжига слитка в зависимости от конкретных требований к величинам τ_e и τ_h в кристалле не только на высокотемпературном этапе, но и на низкотемпературном этапе отжига, когда производится "подчистка" дефектов $V_{\rm Cd}^{-2}$ за счет ассоциирования их с донором. В связи с этим целесообразно было определить, как параметры $\tau_e, \tau_h, \mu_e, \mu_h$ изменяются в зависимости от концентрации вакансий, которая определяется давлением паров P_{Cd} в ампуле при отжиге слитка. Максимальная концентрация вакансий кадмия в кристалле задавалась давлением $P_{\mathrm{Cd}}
ightarrow P_{\mathrm{Cd}}^{\min}$ и уменьшалась при увеличении P_{Cd} в отжигах до значений, соответствующих *p*-типу проводимости (см. рис. 3, левые отрезки кривых 1 и 2 для температур отжига слитка $T_{\rm ann} = 900$ и 1070°C соответственно). Для этих же температур отжига изменения τ_h и μ_h в зависимости от P_{Cd} показаны на рис. 6. Видна одинаковая тенденция уменьшения этих параметров переноса заряда в кристалле при увеличении P_{Cd} при отжиге. Такая зависимость τ_h и μ_h от P_{Cd} объясняется тем, что уменьшение концентрации $V_{\rm Cd}^{-2}$ (при увеличении P_{Cd}) в слитке на высокотемпературном этапе его отжига приводит к меньшей степени ассоциации $V_{\rm Cd}^{-2}$ и Cl⁺_{Te} на низкотемпературном этапе. В результате остающиеся после отжига непровзаимодействовавшие дефекты $V_{\rm Cd}^{-2}$ и $\rm Cl_{\rm Te}^+$ способствуют снижению времени жизни и подвижности дырок.

Влияние температуры отжига слитка на подвижность и время жизни дырок, показанное на рис. 4 и 5, видно

также и из рис. 6. На кристаллах, отожженных при $T_{\rm ann} = 1070^{\circ}$ С, время жизни дырок выше примерно в 1.5 раза (в интервале *B* изменения $P_{\rm Cd}$ на рис. 6) по сравнению с отожженными при $T_{\rm ann} = 900^{\circ}$ С (интервал *A* на рис. 6). Подвижность дырок выше в кристаллах из слитков, отожженных при $T_{\rm ann} = 900^{\circ}$ С, приблизительно в 1.2 раза.

Таким образом, действие температуры отжига является определяющим. Действительно, только при высоких температурах, вследствие большой растворимости V_{Cd}^{-2} , достигаются высокие значения τ_h . Увеличение концентрации $[V_{Cd}^{-2}]$ посредством уменьшения давления P_{Cd} влияет на величину τ_h , но в меньшей мере, не позволяя достигнуть таких же высоких значений τ_h . При низких температурах, вследствие снижения концентрации заряженных и нейтральных дефектов, а также уменьшения неоднородности их распределения, достигаются высокие значения τ_e , μ_e , μ_h .

Влияние P_{Cd} на τ_e и μ_e не было выявлено. Это объясняется тем, что изменение концентрации V_{Cd}^{-2} , к которому чувствительны τ_h и μ_h дырок, оказалось недостаточным для заметного действия на τ_e и μ_e .

Таким образом, в данной работе описан способ двухэтапного отжига слитка CdTe: Cl после его выращивания при программном охлаждении до низких температур (400°С). На высокотемпературном этапе отжига исследовались условия контроля соотношения концентраций атомных дефектов $[\mathrm{Cl}^+_{\mathrm{Te}}] \approx [V_{\mathrm{Cd}}^{-2}]$, являющегося условием самокомпенсации заряженных дефектов в CdTe: Cl, которая достаточно полно происходит на низкотемпературном этапе путем ассоциации их в нейтральные образования. Определены скорости охлаждения слитка при соответствующих величинах легирования хлором, необходимые для самокомпенсации в кристалле. Установлен характер уменьшения растворимости хлора с понижением температуры в процессе охлаждения слитка. При этом регулированием концентрации $[V_{\rm Cd}^{-2}] \gtrsim 0.5 [{\rm Cl}_{\rm Te}^+]$ достигается точная самокомпенсация и, таким образом, высокие значения произведения $\mu \tau$ для носителей заряда в кристалле. Определены тенденции увеличения значений μ_e, μ_h, τ_e при понижении температуры отжига слитка, что объясняется уменьшением содержания заряженных дефектов в кристалле при низких температурах. Для времени жизни дырок τ_h обнаружена обратная тенденция — увеличение τ_h с повышением температуры отжига. Это может быть вызвано уменьшением концентрации вакансий $[V_{\rm Cd}^{-2}]$ вследствие ассоциации их в нейтральные комплексы $(V_{Cd}^{-2}2 \operatorname{Cl}_{\operatorname{Te}}^{+})^{0}$, происходящей в большей степени в процессе отжига при высоких температурах.

Таким образом, предлагаемый в настоящей работе двухэтапный послеростовой отжиг слитка позволяет весьма точно управлять процессами самокомпенсации и "самоочистки" и получать полуизолирующие кристаллы CdTe:Cl с хорошими транспортными характеристиками носителей заряда. Нам представляется, что соответствующий двухэтапный отжиг позволит получать с необходимыми характеристиками также и другие кристаллы соединений A^{II}B^{VI} и их твердых растворов при выращивании их из расплава методом горизонтальной направленной кристаллизации, поскольку в этих материалах, как известно, ярко выражен механизм самокомпенсации, как и в кристаллах CdTe.

Данная работа выполнена при поддержке INTAS (грант 99-01456).

Список литературы

- L.V. Maslova, O.A. Matveev, S.M. Ryvkin, A.Kh. Khusainov, A.I. Terent'ev. Revue Phys. Appl., 12, 291 (1977).
- [2] Е.Н. Аркадьева, Л.В. Маслова, О.А. Матвеев, С.В. Прокофьев, С.М. Рывкин, А.Х. Хусаинов. ДАН СССР, 225, 77 (1975); О.А. Matveev, А.I. Terent'ev. Proc. 11th Workshop on Room Temperature Semiconductor X- and Gammaray Detectors and Associated Electronics (Vienna, Austria, 1999) p. 56.
- [3] R.O. Bell, F.V. Wald, C. Canaly, F. Nava, G. Ottaviani. IEEE Trans. N.S., NS-21, 331 (1974).
- [4] R. Triboulet, Iv. Marfaing, A. Cornet, P. Siffert. J. Appl. Phys., 45, 2759 (1974).
- [5] О.А. Матвеев, Е.Н. Аркадьева, Л.А. Гончаров. ДАН СССР, 221, 325 (1975).
- [6] K. Zanio. Semiconductor and Semimetals (San Francisco– London–N.Y., 1978) v. 13, p. 230.
- [7] О.А. Матвеев, А.И. Терентьев. ФТП, 27, 1894 (1993).
- [8] О.А. Матвеев, А.И. Терентьев. ФТП, **32**, 159 (1998).
- [9] О.А. Матвеев, А.И. Терентьев. ФТП, 29, 378 (1995).
- [10] Ф. Крегер. *Химия несовершенных кристаллов* (М., Мир, 1969).
- [11] E.N. Arkadyeva, O.A. Matveev. Rev. Phys. Appl., 12, 239 (1977).
- [12] H.H. Woodbury, R.B. Hall. Phys. Rev., 157, 641 (1967).
- [13] Физика и химия соединений А^{II}В^{VI}, под ред. С.А. Медведева (М., Мир, 1970).
- [14] Е.Н. Аркадьева, О.А. Матвеев, Е.Н. Мельникова, А.И. Терентьев. ФТП, 14, 1415 (1980).
- [15] T.J. Magee, J. Peng, J. Bean. Phys. St. Sol. (a), 27, 557 (1975).
- [16] H.H. Woodbury. Proc. Int. Conf. on Defect Characterization: Diffusivity and Electrical Measurment in II-VI Semiconducting Compounds (W.A. Benjamin Inc., N.Y., 1967) p. 244.
- [17] H.R. Vydyanath, J. Ellsworth, J.J. Kennedy, B. Dean, C.J. Johnson, G.T. Nengebanez, J. Sepich, Pok-Kai Lino. J. Vac. Sci. Technol. B, 10, 1476 (1992).
- [18] J.H. Greenberg, V.N. Guskov, V.B. Lazarev, O.V. Shekershneva. J. Sol. St. Chem., **102**, 382 (1993).
- [19] А. Дамаск, Дж. Динс. Точечные дефекты в металлах (М., Мир, 1966) с. 291.
- [20] М.В. Алексеенко, Е.Н. Аркадьева, О.А. Матвеев. ФТП, 4, 414 (1970).

Редактор Т.А. Полянская

Basic principles of after-growth annealing of a CdTe : Cl ingot for obtaining semiinsulating crystals

O.A. Matveev, A.I. Terent'ev

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The process of annealing of a CdTe:Cl ingot is explored at cooling it after growth. The annealing has been performed throughout two-stage operations: the hightemperature process when at a thermodynamic equilibrium between the crystal and the vapor of volatile components there occurs an equality of concentrations of chlorine atoms and cadmium vacancies, and the low-temperature one when charged defects interact, generating neutral associates. Chlorine doping concentrations necessary for obtaining semiinsulating crystal were found for various cooling rates at the high-temperature stage. Both temperature and the cadmium vapor pressure dependencies of lifetimes and drift mobilities of charge carriers were obtained during the after-growth annealing of the ingot.