Оптические свойства соединения $Ca_4Ga_2S_7$: Eu²⁺

© Б.Г. Тагиев, У.Ф. Касумов, Н.Н. Мусаева, Р.Б. Джаббаров, А.С. Абушов

Институт физики Академии наук Азербайджана, 370143 Баку, Азербайджан

(Получена 22 февраля 2000 г. Принята к печати 30 марта 2000 г.)

В результате оптических измерений в монокристалле $Ca_4Ga_2S_7:Eu^{2+}$ определен характер оптических переходов в интервале энергий фотонов 1.85–3.00 эВ в области температур 77–300 К. Установлено, что в интервалах энергий 2.2–2.6 и 2.6–3.0 эВ имеют место непрямые и прямые оптические переходы с шириной запрещенной зоны соответственно $E_{gi} = 1.889$ эВ и $E_{gd} = 2.455$ эВ при 300 К. Температурные коэффициенты E_{gi} и E_{gd} равны $-5.15 \cdot 10^{-4}$ и $-14.86 \cdot 10^{-4}$ эВ/К.

1. Введение

Соединение Ca₄Ga₂S₇: Eu²⁺ относится к группе высокоэффективных люминофоров с общей формулой Ca_mGa₂S_n: P3Э (P3Э — редкоземельный элемент), где $n = 4, 5, 6, \ldots, m = n - 3$ [1]. В литературе нами не обнаружено никаких данных относительно зонной структуры соединений типа Ca₄Ga₂S₇. Исследование оптических свойств полупроводников позволяет достоверно определять важнейшие характеристические параметры — ширину запрещенной зоны, эффективные массы и подвижности электронов и дырок, энергии акустических и оптических фононов и многое другое. В настоящей работе представлены результаты исследований коэффициента оптического поглощения α в монокристаллах Ca₄Ga₂S₇: Eu²⁺.

Выращивание монокристаллов Ca₄Ga₂S₇: Eu²⁺

Поликристаллические образцы $Ca_4Ga_2S_7$ были получены сплавлением компонент CaS и Ga_2S_3 при температуре 1400 K, взятых в стехиометрических соотношениях. Синтез проводился как в вакуумированных кварцевых ампулах (10⁻⁵ мм рт.ст.), так и в кварцевом тигле под слоем активированного угля. Для получения сведений

о симметрии и структуре полученных образцов проводился рентгенографический анализ. На дифрактограмме (рис. 1) (DRON 3M, Cu K_{α} -излучение, 10 < 2 θ < 60°) зафиксированы четыре дифракционных пика, соответствующих 2 θ = 27°40′, 31°32′, 42°06′, 56°00′. Межплоскостные расстояния (*d*) соответствующих отражений: 3.221, 2.834, 2.082, 1.642 Å. Синтезированные кристаллы имеют кубическую гранецентрированную решетку с параметром *a* = 5.67 Å. Индексы отражений следующие: (111), (200), (200), (222). Анализ полученных данных позволяет считать, что при взаимодействии компонент 4CaS и Ga₂S₃ образуется кубическая структура типа сфалерита.

Близость ионных радиусов РЗЭ (0.80–1.04 Å) и Ca (0.99 Å) способствует изоморфному внедрению активатора в матрицу, что обусловливает высокую яркость люминесценции и резкость линий в спектрах люминесценции [2,3].

Монокристаллы $Ca_4Ga_2S_7:Eu^{2+}$ в виде цилиндрических слитков диаметром 8–10 мм и высотой 15–17 мм были получены методом Бриджмена. Образцы $Ca_4Ga_2S_7:Eu^{2+}$ были изготовлены путем сошлифовывания монокристаллических слитков. С ростом толщины образцов их цвет меняется от светло-оранжевого до красного цвета.

Рис. 1. Дифрактограмма соединения Ca₄Ga₂S₇.

3. Методика измерений

На установке, собранной на базе монохроматора МДР-12, была исследована спектральная зависимость коэффициента поглощения $\alpha(h\nu)$ образцов монокристаллов Ca₄Ga₂S₇:Eu²⁺ в интервале температур T = 77-300 К и диапазоне энергий фотонов $h\nu = 1.85-3.00$ эВ. Источником возбуждения служила лампа накаливания.

4. Результаты исследований и их обсуждение

На рис. 2 представлены экспериментальные зависимости $\alpha(h\nu)$ для образца толщиной 70 мкм при различных температурах. Видно, что на этих кривых выделяются три участка: в интервале $h\nu = 1.85-2.03$ эВ α практически не зависит от $h\nu$; быстрый рост α в интервале 2.03–2.50 эВ; значительный рост α в интервале $h\nu = 2.50-3.00$ эВ. Кроме того, зависимость $\alpha(h\nu)$ с повышением температуры смещается в длинноволновую часть спектра, а величина α пробегает значения от 500 до 1040 см⁻¹.

Полученные результаты проанализированы нами в соответствии с теорией прямых и непрямых перехо-

Рис. 2. Спектральные зависимости коэффициента оптического поглощения Ca₄Ga₂S₇: Eu²⁺ при температурах *T*, K: *I* — 115, 2 - 173, 3 - 212, 4 - 233, 5 - 251, 6 - 273, 7 - 300.

Рис. 3. Спектральная зависимость $(\alpha - \alpha_0)^{1/2}$ для соединения Ca₄Ga₂S₇: Eu²⁺ при температурах *T*, K: *I* — 115, *2* — 173, *3* — 212, *4* — 233, *5* — 251, *6* — 273, *7* — 300.

дов [4–7]. Как известно, в общем случае $\alpha(h\nu)$ можно представить в виде суммы трех слагаемых:

$$\alpha = \alpha_i + \alpha_d + \alpha_b, \tag{1}$$

где α_i и α_d — коэффициенты оптического поглощения при непрямых и прямых переходах соответственно, α_b — коэффициент оптического поглощения при фоновом поглощении, практически не зависящий от энергии фотонов.

На рис. 3 представлены экспериментальные данные в координатах $(\alpha - \alpha_b)^{1/2} - h\nu$. На зависимостях можно выделить два прямолинейных участка с различными наклонами, которые увеличиваются с температурой. Согласно теории непрямых переходов, эти участки связаны с поглощением и испусканием фононов, и коэффициент оптического поглощения определяется при этом по формуле [8]

$$\alpha(h\nu) = A \left[\frac{(h\nu - E_{gi} + E_p)^2}{e^{\Theta/T} - 1} - \frac{(h\nu - E_{gi} - E_p)^2}{1 - e^{-\Theta/T}} \right], \quad (2)$$

где E_{gi} — ширина запрещенной зоны для непрямых переходов, E_p — энергия фонона, Θ — характеристическая температура, T — абсолютная температура, A — величина, слабо зависящая от $h\nu$ и T. В (2) первое слагаемое связано с поглощением (α_a), а второе с испусканием (α_e) фононов, поэтому наклоны прямых $\alpha_a^{1/2} = f_1(h\nu)$ и $\alpha_e^{1/2} = f_2(h\nu)$ можно определить следующими выражениями:

$$K_a = \left(\frac{A}{e^{\Theta/T} - 1}\right)^{1/2}, \qquad K_e = \left(\frac{A}{1 - e^{-\Theta/T}}\right)^{1/2}.$$
 (3)

Отсюда получается

$$K_e^2/K_a^2 = \mathrm{e}^{\Theta/T}.$$
 (4)

Используя экспериментальные данные и формулы (2)-(4), мы определили значения E_{gi} , E_p , Θ , которые приведены в таблице.

Параметры $Ca_4Ga_2S_7$: Eu^{2+} , определенные из оптических спектров

T,K	E_{gi} , эВ	K_e , см ^{-1/2} ·эВ ⁻¹	K_{α} , см ^{-1/2} ·эB ⁻¹	Θ,K	E_p , эВ
115	1.997	22.4	17.7	53.9	0.0445
173	1.975	23.2	19.5	61.31	0.04
212	1.954	24.8	19.2	109.28	0.051
233	1.929	25.2	19.1	128.68	0.0675
251	1.933	29.1	19.5	202.27	0.0785
273	1.922	28.7	23.5	109.12	0.055
300	1.889	28.1	23.7	101.42	0.0415

Как видно из рис. 2, в области энергии фотонов $h\nu \geq 2.5$ эВ наблюдается резкий рост коэффициента поглощения. Для выяснения характера оптических переходов в этом интервале энергии экспериментальные данные представлены в координатах $(\alpha - \alpha_b)^2 - h\nu$ (рис. 4) [9]. Видно, что при энергиях $h\nu \geq 2.5$ эВ

Рис. 4. Спектральная зависимость $(\alpha - \alpha_0)^2$ для соединения Ca₄Ga₂S₇: Eu²⁺ при температурах *T*, K: *I* — 115, *2* — 173, *3* — 212, *4* — 233, 5 — 251, 6 — 273, 7 — 300.

Рис. 5. Зависимость ширины запрещенной зоны при прямых (1) и непрямых (2) переходах (E_{gd} и E_{gi} соответственно) от температуры.

значения коэффициента оптического поглощения хорошо укладываются на прямую. Такая зависимость указывает на то, что край собственного поглощения в Ca₄Ga₂S₇: Eu²⁺ обусловлен прямыми разрешенными оптическими переходами. Для определения ширины запрещенной зоны при прямых разрешенных переходах прямые $(\alpha - \alpha_b)^2 = f(h\nu)$ экстраполировались к значению $(\alpha - \alpha_b) = 0$.

На рис. 5 представлены температурные зависимости E_{gi} , E_{gd} (E_{gd} — ширина запрещенной зоны для прямых переходов), из которых для температурных коэффициентов этих величин определены соответственно значения $-5.15 \cdot 10^{-4}$ и $-14.86 \cdot 10^{-4}$ эВ/К.

Список литературы

- Б.Г. Тагиев, А.Н. Георгобиани, Р.Б. Джаббаров, У.Ф. Касумов, Н.Н. Мусаева. Новые технологии — 21 век, № 2, 58 (1999).
- [2] Б.Г. Тагиев, О.Б. Тагиев, Р.Б. Джаббаров, Н.Н. Мусаева, У.Ф. Касумов. Неорг. матер., 36, 3 (2000).
- [3] Seishi Iida, Tamao Matsumoto, N.T. Mamedov, Gyejong An, Yosuke Maruyama, A.I. Bairamov, B.G. Tagiev, R.B. Dzhabbarov. Japan. J. Appl. Phys., 36, pt. 2, L857 (1997).
- [4] C. Jullien, M. Eddrief, K. Kambas, M. Balkanski. Thin. Sol. Films, 137, 27 (1986).
- [5] E. Cuerrero, M. Quinterro, J.C. Wolley. J. Phys.: Condens. Matter, 2, 6119 (1990).
- [6] A.M. Elkorashy. Phys. St. Sol. (b), 135, 707 (1986).
- [7] S. Saha, U. Pal, A.K. Chaudhuri, V.V. Rao, H.D. Banerjee. Phys. St. Sol. (a), **114**, 721 (1989).
- [8] Арант, Шимизо, К. Кудо. Тр. IX межд. конф. по физике полупроводников (Л., Наука, 1969) с. 172.
- [9] Н.С. Панков. Оптические процессы в полупроводниках (М., Мир, 1973).

Редактор Л.В. Шаронова

Optical properties of $Ca_4Ga_2S_7$: Eu^{2+} single crystals

B.G. Tagiev, U.F. Kasumov, N.N. Musaeva, R.B. Jabbarov, A.S. Abushov

Institute of Physics of Azerbaijan Academy of Sciences, 370143 Baku, Azerbaijan

Abstract Optical measurements have been performed on a $Ca_4Ga_2S_7:Eu^{2+}$ single crystal. The nature of optical transitions is determined in the photon energy interval 1.85-3.00 eV in the temperature range 77-300 K. It is shown, that indirect and direct optical transitions take place in the energy intervals 2.2-2.6 eV and 2.6-3.0 eV, corresponding to the gaps $E_{gi} = 1.889 \text{ eV}$ and $E_{gd} = 2.455 \text{ eV}$ at T = 300 K. The temperature coefficients of E_{gi} and E_{gd} are equal to $-5.15 \cdot 10^{-4}$ and $-14.86 \cdot 10^{-4} \text{ eV/K}$, respectively.