Элементный состав и электрические свойства пленок a-C:H \langle Cu \rangle , полученных магнетронным распылением

© Т.К. Звонарева, В.М. Лебедев[†], Т.А. Полянская, Л.В. Шаронова[¶], В.И. Иванов-Омский

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

[†] Петербургский институт ядерной физики им. Б.П. Константинова Российской академии наук, 188850 Гатчина, Россия

(Получена 14 марта 2000 г. Принята к печати 16 марта 2000 г.)

Методом магнетронного сораспыления графитовой и медной мишеней в аргоно-водородной атмосфере на постоянном токе получены пленки аморфного гидрогенизированного углерода с различной концентрацией меди. Определено относительное содержание атомов углерода, меди, кислорода с использованием метода обратного резерфордовского рассеяния протонов и метода ядерных реакций. Исследована удельная проводимость пленок на постоянном токе в геометрии вдоль и поперек пленки. Данные по проводимости обсуждаются в модели среды, представляющей собой диэлектрическую матрицу с включениями двух разных проводящих фаз в виде графитоподобных и медных нанокластеров.

1. Введение

Задачи создания и изучения свойств систем металлических нанокластеров в диэлектрических средах находятся в рамках общего интереса современной физики конденсированных сред к исследованию структур с ограниченной размерностью. В этом направлении отметим появившиеся в последнее время работы по инкапсулированию металлических нанокластеров в углерод [1,2]. В таком материале концентрация металла сопоставима с концентрацией углерода, и по существу речь идет о системе металлических нанокластеров (преципитатов), распределенных в углеродной матрице [1], или о металлических каплях в углеродной оболочке [2]. Развитие нанокластерных систем на основе аморфного углерода позволяет в перспективе рассчитывать на создание сред для записи и хранения информации, особенно при использовании для формирования кластеров магнитных металлов. Электронные явления (и в частности электронный перенос) в таких системах, являющихся мезоскопическими средами, представляют интерес для наноэлектроники. В то же время их проводимость во взаимосвязи со структурой и составом материала практически не изучена, особенно при больших концентрациях металла.

В данной работе в качестве нанокластерных мезоскопических систем исследованы пленки аморфного гидрогенизированного углерода a-C:H \langle Cu \rangle с концентрацией меди на уровне единиц–десятков ат%. Результаты исследования [3–8], проведенного ранее на аналогичных образцах, показали, что при больших концентрациях медь частично встраивается в виде отдельных атомов в углеродную сетку, интеркалируя графитовые нанокластеры, имеющиеся в пленке, а частично выпадает в виде металлических капель, случайным образом распределенных в углеродной сетке, т. е. формируется мезоскопическая нанокластерная среда. В одной из предыдущих работ [3] измерялась проводимость на подобных образцах, однако отличие данной работы заключается в том, что проведен детальный анализ элементного состава пленок и исследована проводимость в разной геометрии — как вдоль, так и поперек пленки. Информация об удельной проводимости в разной геометрии может оказаться существенной, поскольку пленки выращиваются в сильно неравновесных условиях, их толщина мала и, значит, можно ожидать проявления анизотропии, связанной с ориентацией проводящих каналов по отношению к плоскости пленки.

2. Выращивание пленок a-C: H \langle Cu \rangle

Пленки *a*-C:H \langle Cu \rangle были получены методом магнетронного сораспыления графитовой и медной мишеней на постоянном токе в аргоно-водородной плазме [80% Ar + 20% H₂] [9]. Изменение концентрации вводимой в углеродные пленки меди осуществлялось за счет изменения соотношения площадей медной и графитовой мишеней $\Sigma = S[Cu]/S[C]$.

Пленки осаждались на подложки, нагретые до 200°С. В распылительной камере предварительно создавался вакуум на уровне остаточного давления 10^{-6} мм рт.ст. Осаждение пленок производилось в потоке рабочего газа при давлении 10^{-2} мм рт.ст. и плотности ионного тока 10^{-1} А/см². Все пленки были получены при отрицательном автосмещении на подложке, не превышающем 10 В. Скорость роста пленок зависела от концентрации вводимой меди (т.е. от величины Σ) [9] и в наших экспериментах составляла 3–7 нм/мин.

Время осаждения пленок t и соотношение площадей медной и графитовой мишеней $\Sigma = S[\text{Cu}]/S[\text{C}]$ приведены в таблице (здесь и далее используются технологические номера образцов). Исследовались две основные серии образцов, полученные при времени осаждения пленок t = 0.5 и 5.25 ч, и дополнительно одна пленка на подложке из стекла с временем осаждения t = 1 ч (образец 357). В каждом акте распыления двух основных

[¶] E-mail: shar@nano.ioffe.rssi.ru

№ образца	$\Sigma = S[\mathrm{Cu}]/S[\mathrm{C}]$	<i>t</i> ,ч	Толщина, нм	Плотность, г/см ³	[Cu]/[C]	[O]/[C]
365	0	0.5	70		0.028	0.11
366	0.021	0.5	105		0.17	0.35
370	0.067	0.5	160		0.37	0.43
408	0.108	0.5	250		0.62	0.54
368	0.134	0.5	230		0.76	0.55
357	0	1.0	240			
374	0	5.25	780	1.79	0.005	0.11
375	0.091	5.25	1850	3.62	0.90	0.82
383	0.108	5.25	1900	3.58	1.02	0.89
407	0.116	5.25	1720	3.49	1.00	0.90
386	0.125	5.25	1730	3.53	0.94	0.96
410	0.134	5.25	1820	3.46	0.96	0.91
376	0.143	5.25	2180	3.81	1.30	0.91

Параметры образцов а-С:Н(Си)

Примечание. [Cu]/[C] — отношение атомных концентраций Си и С; [O]/[C] — отношение атомных концентраций О и С.

серий пленки осаждались одновременно на подложки из плавленного кварца и кристаллического кремния *c*-Si ориентации (100) марки КДБ-20. В таблице приведены толщины пленок на кварцевых подложках, определенные с помощью интерференционного микроскопа Линника МИИ-11 для пленок с временем осаждения t = 5.25 ч, а для более тонких пленок — из эллипсометрических измерений, проведенных с использованием эллипсометра ЛЭФ-3М.

Элементный состав пленок *a*-C: H⟨Cu⟩

Элементный состав, т.е. относительное содержание углерода, кислорода и меди, определялся для пленок a-C:H \langle Cu \rangle на кремниевых подложках с помощью ядерно-физических методов элементного анализа: обратного резерфордовского рассеяния и ядерных реак-

ций [10]. Работа проводилась на аналитическом комплексе для исследования материалов, созданном на базе электростатического ускорителя в Петербургском институте ядерной физики им. Б.П. Константинова Российской академии наук [11].

Типичные спектры рассеянных на угол 135° протонов (p) для пленок *a*-C: H(Cu) приведены на рис. 1. Энергия протонов в пучке составляла $E_p = 1$ МэВ. Кремний в спектрах проявляется из-за наличия рассеяния на атомах подложки. Относительные концентрации углерода, кислорода и меди в исследованных образцах определялись для тонких пленок — из площадей соответствующих этим элементам пиков (рис. 1, *a*), для более толстых пленок — из высот ступенек (рис. 1, *b*), поскольку эти величины пропорциональны сечению рассеяния и концентрации атомов данного сорта в мишени [10]. Так как в спектрах, полученных для толстых пленок (~ 2 мкм) при нормальном падении пучка ($\theta = 0^\circ$),

Рис. 1. Спектры рассеянных на угол 135° протонов с начальной энергией $E_p = 1$ МэВ на атомах углерода, кислорода, меди и кремния в пленках *a*-C:H(Cu) на подложках *c*-Si: *a* — пленка 408 толщиной 250 нм при нормальном ($\theta = 0^{\circ}$) падении пучка на мишень, *b* — пленка 407 толщиной 1720 нм при нормальном ($\theta = 0^{\circ}$) и наклонном ($\theta = 60^{\circ}$) падении пучка на мишень. Показаны парциальные вклады отдельных элементов (углерода, кислорода, меди, кремния) в общий спектр.

Рис. 2. Спектры протонов, образовавшихся в результате ядерных реакций ${}^{12}C(d, p){}^{13}C$, ${}^{16}O(d, p){}^{17}O$ и ${}^{28}Si(d, p){}^{29}Si$ на атомах углерода, кислорода и кремния в пленках *a*-C:H(Cu) на подложках *c*-Si при нормальном ($\theta = 0^{\circ}$) падении пучка дейтронов с начальной энергией $E_d = 1$ МэВ на мишень: *a* — пленка 408 толщиной 250 нм, *b* — пленка 407 толщиной 1720 нм. Детектор протонов расположен под углом 135° к направлению пучка и закрыт алюминиевым поглотителем толщиной 11 мкм.

ступенька, образовавшаяся от рассеяния протонов на атомах углерода, совпадает по энергии с краем спектра рассеяния от кремниевой подложки, применялось также скользящее, под углом $\theta = 60^{\circ}$, падение пучка протонов на исследуемую мишень (рис. 1, *b*).

Содержание углерода и кислорода в пленках было определено и другим методом — с помощью ядерных реакций с дейтронами (d): ${}^{12}C(d, p){}^{13}C$ и ${}^{16}O(d, p){}^{17}O$ [10]. Характерные спектры протонов, образовавшихся в результате ядерных реакций на содержащихся в пленках 407 и 408 атомах углерода и кислорода, приведены на рис. 2. Начальная энергия дейтронов $E_d = 1$ МэВ. Детектор ионов, расположенный под углом 135° к направлению пучка, был защищен от рассеянных в заднюю полусферу дейтронов поглощающим алюминиевым фильтром толщиной 11 мкм. При оценке содержания кислорода в пленках использовались калибровочные пленочные образцы SiO₂ и Al₂O₃.

Данные по относительному содержанию углерода, меди, кислорода в пленках a-C:H \langle Cu \rangle , полученные двумя разными методами, практически совпадают, в усредненном виде они приведены в таблице.¹

На рис. З представлено отношение атомных концентраций меди и углерода, введенных в пленку, [Cu]/[C] в виде функции отношения площадей распыляемых мишеней Σ . Можно сделать два основных вывода. Во-первых, не удается получить единую калибровочную зависимость для пленок, полученных при разном времени распыления: хотя и допустимо в обоих случаях рассматривать эти зависимости как линейные (с большей точностью для тонких пленок, с меньшей — для толстых), но наклон прямых различается в ~ 1.3 раза. Во-вторых, реальное отношение атомных концентраций [Cu]/[C]превышает отношение площадей мишеней в несколько (6-8) раз вследствие различия скоростей распыления меди и графита.

Как следует из таблицы, особенностью пленок является большое содержание кислорода. Его происхождение связано, по-видимому, с остаточной атмосферой в ростовой камере. Кислород, как и медь, входит в тонкие и в толстые пленки в разной концентрации при одинаковых технологических условиях (когда различается только продолжительность процесса распыления). При этом для тех и других образцов наблюдается рост концентрации кислорода с увеличением концентрации меди (рис. 4).

В экспериментах по обратному резерфордовскому рассеянию определялись также массовые толщины пленок. Для пленок с толщинами до нескольких микрометров энергетическая ширина спектра, соответствующая рассеянию от пленки, пропорциональна ее толщине, при этом коэффициент пропорциональности зависит от элементного состава исследуемой мишени, кинематики рассеяния и тормозных потерь протонов на влете в

Рис. 3. Связь реального отношения атомных концентраций [Cu]/[C] в пленках *a*-C:H(Cu) с отношением площадей распыляемых мишеней $\Sigma = S[Cu]/S[C]$ для двух серий образцов с временем осаждения t = 0.5 (1) и 5.25 ч (2).

 $^{^1}$ Из экспериментов по эффузии водорода, проведенных на пленках *a*-C: Н без меди, известно, что концентрация водорода в них составляет величину ~ 25 ат%.

Рис. 4. Корреляция атомной концентрации кислорода [O] с атомной концентрацией меди [Cu] в пленках *a*-C:H \langle Cu \rangle для двух серий образцов с временем осаждения t = 0.5 (*I*) и 5.25 ч (*2*).

образец и вылете из него [10]. В сочетании с известными значениями линейных толщин пленок эти результаты позволили оценить массовые плотности. Поскольку массовые толщины определяются с точностью от 5% для толстых и до ~ 50% для тонких пленок, в таблице приведены значения плотности только для толстых пленок. В *a*-C:Н без меди плотность составляет 1.7 г/см³ — значение, характерное для аморфного гидрогенизированного углерода [12]. Значения на уровне 3.5 г/см^3 для пленок с медью объясняются именно вкладом меди (плотность массивной меди ~ 9 г/см³). Приведенные величины плотности для толстых пленок, строго говоря, следует рассматривать

как оценочные, а не как точные, поскольку линейные толщины определялись для пленок на кварцевых подложках, массовые толщины — для пленок на кремниевых подложках, а скорость роста пленок на разных подложках может различаться даже в одном акте осаждения.

4. Проводимость пленок a-C:H(Cu)

Измерения проводимости осуществлялись при комнатной температуре на постоянном токе при напряжениях на образце ≤ 0.5 В (в области линейности вольт-амперной характеристики). Исследовались пленки на подложках из кремния, кварца, стекла, однако мы отдаем предпочтение результатам, полученным при использовании диэлектрических подложек (кварц и стекло). Пленки снабжались электродами из Ni. На подложку с размерами $\sim 1 \times 2\,\mathrm{cm}^2$ до выращивания пленки методом высокочастотного ионно-плазменного наносились параллельные распыления полоски шириной Ni ~ 0.7 мм на расстоянии 3 мм. После осаждения пленки они использовались как электроды для измерения проводимости в планарной геометрии. Затем на поверхность пленки наносились тем же способом никелевые полоски, перпендикулярные (в плоскости пленки) нижним и такой же ширины. Перекрестия нижних и верхних электродов по существу представляли собой набор образцов для измерения проводимости поперек пленки в разных ее точках (5-6 точек на пленке), и площадь каждого такого образца составляла $\sim 0.5\,{\rm MM}^2$. Чтобы исключить возможные артефакты, связанные с верхними Ni-электродами (например, можно предположить проникновение атомов металла глубоко

Puc. 5. Удельное сопротивление *a*-C:H(Cu): *a* — измерения поперек (*1*–3) и в плоскости пленки (1'-3') на подложках из кварца (*1*, *1'*, *3*, *3'*) и стекла (*2*, *2'*); *b* — измерения поперек пленки на подложках из кварца (*3*) и кремния (*4*). Время осаждения t = 0.5 (*1*, *1'*), 1 (*2*, *2'*), 5.25 ч (*3*, *4*, *3'*) (см. таблицу).

в толщу пленки или даже сквозь пленку до подложки), использовался и другой вариант верхних электродов капли эвтектики In + Ga наносились непосредственно на углеродную пленку при комнатной температуре. В обоих случаях общая картина электрических свойств пленок была одна и та же.

Полученные результаты в виде зависимости удельного сопротивления от отношения атомных концентраций углерода и меди представлены на рис. 5. Ha рис. 5, а приведены данные для всех пленок на кварце и стекле во всем исследованном диапазоне составов (см. таблицу), причем нанесены точки, соответствующие проводимости как поперек пленки (светлые точки), так и вдоль нее (темные). Из рис. 5, b, где сравниваются данные для пленок с временем напыления 5.25 ч на подложках из кремния и кварца, видно, что в этих двух случаях картина проводимости одна и та же. Материал подложки не сказывается на электрических свойствах самих пленок сколь-нибудь существенным образом, хотя с точки зрения измерений проводимости углеродных пленок диэлектрические подложки (кварц, стекло) более предпочтительны, чем кремний. Для пленок на кремнии измерить величину проводимости вдоль пленки невозможно из-за шунтирования подложкой. При измерениях проводимости поперек пленки на кремнии тоже не всегда удавалось получить достоверные данные. В качестве критерия достоверности мы приняли линейность вольтамперной характеристики. По-видимому, при выбранной нами геометрии электродов на распределение потенциала в пленке влияет подложка, когда ее сопротивление недостаточно велико.

Из рис. 5 видно, что все значения удельного сопротивления при измерении поперек пленки группируются на двух уровнях шкалы удельного сопротивления $\rho = 10^3 - 10^5$ и $10^8 - 10^{10}$ Ом см (удельная проводимость $\sigma = 10^{-3} - 10^{-5}$ и $10^{-8} - 10^{-10}$ Ом⁻¹ см⁻¹ соответственно). Это относится как к тонким (t = 0.5 ч), так и к толстым (t = 5.25 ч) пленкам и никак не коррелирует с содержанием меди в исследуемом диапазоне концентраций. При этом оба уровня сопротивления могут наблюдаться в пределах одной и той же пленки. Данные, полученные в планарной геометрии, за исключением одной точки (образец 375), соответствуют верхнему уровню сопротивления.

Такую ситуацию можно смоделировать, если представить высокоомную матрицу (верхний уровень сопротивления) с нанометровыми вкраплениями проводящей фазы. Когда размеры отдельных вкраплений или их цепочек сравнимы с толщиной пленки, и они оказываются в области контактов, тогда и наблюдаются "проколы" поперек пленки, характеризуемые нижним уровнем сопротивления.

Что из себя представляет проводящая фаза, соответствующая нижнему уровню удельного сопротивления, неизвестно. Вряд ли она сформирована из чисто медных кластеров: во-первых, не наблюдается каких-либо заметных изменений в проводимости при изменении концентрации меди, эффект "проколов" наблюдается в том числе на образцах а-С:Н без меди; во-вторых, даже наименьшие из экспериментальных значений удельного сопротивления значительно превышают удельное сопротивление массивной меди. Можно предположить, что проводимость в "проколах" определяется графитоподобными кластерами, которые присутствуют в пленках a-С: H (без меди), а в пленках a-С: H (Сu) они могут быть модифицированы (интеркалированы) атомами меди [8]. Фотографии поперечных сколов пленок [9], полученные методом сканирующей электронной микроскопии, свидетельствуют о наличии структурных неоднородностей, ориентированных от подложки к поверхности и наиболее сильно развитых в образцах с медью. При такой структурной анизотропии естественно ожидать, что электрические свойства также будут анизотропными. Вполне вероятно, что проводящие каналы являются составными элементами неоднородностей, наблюдаемых в работе [9].

Выше было сказано, что в пленках а-С:Н(Си) медь может выпадать и в виде чисто медных капель (медных нанокластеров). При большой плотности такие медные нанокластеры сами должны образовывать проводящие цепочки, и тогда должно наблюдаться протекание по этим металлическим каналам, т.е. переход на уровень проводимости, сопоставимый с проводимостью меди. Если исходить из данных таблицы и при этом считать, что во всех образцах концентрация водорода сохраняется на уровне 25 ат%, то для образцов второй серии (время осаждения $t = 5.25 \, \text{ч}$) оценка дает объемное содержание меди ~ 30% — величину порядка критической концентрации в теории протекания или близкую к ней [13]. Однако на рис. 5 перехода к металлической проводимости по меди не наблюдается. Этому может быть несколько причин. Во-первых, выводы теории протекания строятся на случайном распределении примесных атомов (в нашем случае атомов меди). Вместе с тем мы допускаем, что формирование металлических кластеров в пленках является результатом коррелированного распределения атомов вследствие неравновесных условий роста. В таком случае для определения порога протекания следует рассматривать случайное распределение уже не атомов, а кластеров, и это дает более высокие значения критической концентрации меди. Во-вторых, как мы полагаем, (об этом говорилось выше) часть атомов меди встраивается в графитовую сетку (интеркалирование) и поэтому не участвует в формировании металлических каналов протекания, т. е. эффективная концентрация атомов меди, образующих каналы протекания, меньше общей концентрации.

В дополнение следует сказать, что пока неизвестно, какую роль играет кислород в пленках. В первую очередь возникает предположение, что медь вступает в соединение с кислородом, образуя окислы Cu₂O или CuO. В спектрах инфракрасного поглощения пленок *a*-C:H \langle Cu \rangle , полученных с помощью спектрометра Specord-75IR, нами обнаружена полоса поглощения с максимумом при ~ 635 см⁻¹ (рис. 6), которая может

Рис. 6. Спектральная зависимость коэффициента поглощения пленки a-C:H \langle Cu \rangle (образец 376) в области колебательных частот Cu₂O.

Рис. 7. Удельное сопротивление *a*-C: H \langle Cu \rangle при измерении в плоскости пленки в зависимости от технологического параметра содержания меди Σ . К данным l'-3' рис. 5 добавлены точки для пленок *a*-C: H \langle Cu \rangle с большой концентрацией меди на разных диэлектрических подложках (стекло, кварц) и разной толщины.

быть связана с Cu₂O [14]. При этом полосы́ поглощения CuO в области ~ 510 см⁻¹ [14] обнаружить не удалось. Однако, даже учитывая наличие в пленках Cu₂O, можно утверждать, что далеко не вся медь окисляется и значительная часть ее остается в свободном состоянии. Свидетельством этому является прямое наблюдение медных кластеров в аналогичных пленках *a*-C:H(Cu) в [6,7].

Для того чтобы все же наблюдать переход к металлической проводимости по меди и определить, при каких реальных технологических условиях (значениях параметра Σ) он может осуществляться, на рис. 7 собраны результаты измерений латеральной проводимости в плоскости пленки на разных образцах, в том числе за рамками исследуемых серий и при больших концентрациях меди ($\Sigma \rightarrow 1$). Видно, что при $\Sigma \gtrsim 0.4$ действительно происходит переход на третий уровень проводимости ($\sigma = 10^5 - 10^6 \, \mathrm{Cm}^{-1} \cdot \mathrm{cm}^{-1}$), который соответствует проводимости металлической меди.

5. Заключение

Результаты исследования элементного состава пленок a-C:H \langle Cu \rangle , полученных магнетронным распылением, показывают, что соотношение углерода, меди, кислорода зависит от продолжительности роста пленки при одних и тех же технологических условиях.

Из измерений удельной проводимости установлено наличие анизотропии, связанной с геометрией роста пленок *a*-C:H(Cu). В большом диапазоне концентраций меди (по оценкам, от 0 до $\sim 30 \, \mathrm{at\%}$) имеются каналы проводимости поперек пленки типа "проколов", в то время как проводимость в плоскости пленки мала. Всю совокупность данных по проводимости при концентрации меди в пленках вплоть до величин, по оценкам, $\gtrsim 50 \, \mathrm{ar}\%$ удается интерпретировать в модели диэлектрической матрицы ($\sigma = 10^{-10} - 10^{-8} \, \mathrm{Om}^{-1} \cdot \mathrm{cm}^{-1}$) с включениями двух разных проводящих фаз с удельной проводимостью на уровне $\sigma = 10^{-5} - 10^{-3}$ и $10^5 - 10^6 \,\mathrm{Om^{-1} \cdot cm^{-1}}$. Предполагается, что первая из них представляет собой графитоподобные нанокластеры, в том числе интеркалированные атомами меди (может вносить вклад и проводимость по Cu₂O), вторая — медные нанокластеры.

Таким образом, электрические свойства пленок, полученные магнетронным распылением, соответствуют представлениям об *a*-C:H \langle Cu \rangle как мезоскопической среде. Более того, *a*-C:H (аморфный гидрогенизированный углерод без меди) также является мезоскопической средой. Просто в зависимости от концентрации меди в пленках *a*-C:H \langle Cu \rangle определяющую роль в проводимости играют разные системы кластеров. Заметим, что ранее мезоскопические эффекты наблюдались при измерении на аналогичных пленках вольт-амперных характеристик с использованием зонда туннельного микроскопа [15].

Авторы благодарят Г.С. Фролову за предоставление результатов по инфракрасной спектроскопии и А.В. Нащекина за участие в измерениях проводимости пленок a-C:H(Cu).

Работа выполнена при поддержке Государственной целевой программы "Интеграция" (проект № 75) и при поддержке Российского фонда фундаментальных исследований (гранты № 00-02-16994 и № 00-02-17004).

Список литературы

- T. Cabioc'h, A. Naudon, M. Jaouen, D. Thiaudiere, D. Babonneau. Phil. Mag., **79** (3), 501 (1999).
- [2] J. Jiao, S. Seraphin. J. Appl. Phys., 83 (5), 2442 (1998).
- [3] В.И. Иванов-Омский, А.Б. Лодыгин, С.Г. Ястребов. ФТТ, 37 (6), 1693 (1995).
- [4] V.I. Ivanov-Omskii, A.B. Lodygin, S.G. Yastrebov. Mol. Mater., 8, 95 (1996).
- [5] V.I. Ivanov-Omskii, A.I. Tolmatchev, S.G. Yastrebov. Phil. Mag. B, 73, 715 (1996).
- [6] В.И. Иванов-Омский, В.И. Сиклицкий, С.Г. Ястребов. ФТТ, 40 (3), 568 (1998).

- [7] A.V. Kolobov, H. Oyanagi, S.G. Yastrebov, V.I. Ivanov-Omskii, K. Tanaka. J. Surf. Analysis, 4 (2), 377 (1998).
- [8] В.И. Иванов-Омский, Э.А. Сморгонская. ФТП, 32(8), 931 (1998).
- [9] Т.К. Звонарева, В.И. Иванов-Омский, А.В. Нащекин, Л.В. Шаронова. ФТП, 34(1), 96 (2000).
- [10] *Ion Beam Handbook for Material Analysis*, ed. by J.M. Mayer, E. Rimini (N.Y., Academic Press, 1977).
- [11] V.M. Lebedev, V.A. Smolin. 1994–1995 PNPI Research Report (Gatchina, 1996) p. 296.
- [12] F. Jansen, M. Machonkin, S. Kaplan, S. Hark. J. Vac. Sci. Technol., A3 (3), 605 (1985).
- [13] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- [14] D. Kember, N. Sheppard. Appl. Spectr., 29 (6), 496 (1975).
- [15] А.О. Голубок, О.М. Горбенко, Т.К. Звонарева, С.А. Масалов, В.В. Розанов, С.Г. Ястребов, В.И. Иванов-Омский. ФТП, **34** (2), 223 (2000).

Редактор Л.В. Шаронова

Chemical compound composition and electrical properties of C: H(Cu) films prepared by magnetron sputtering

T.K. Zvonareva, V.M. Lebedev[†], T.A. Polyanskaya, L.V. Sharonova, V.I. Ivanov-Omskii

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia [†]St.Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, 188350 Gatchina, Russia

Abstract Amorphous hydrogenated carbon films with different copper concentrations (up to tens of at%) were prepared by dc co-sputtering graphite and copper targets in an argon–hydrogen atmosphere. Relative atomic concentrations of carbon, copper, oxygen were determined by the use of the proton Rutherford back-scattering and nuclear reaction techniques. Measurements of transverse (throughout the film) and longitudinal (across the film plane) conductivity were made. Tha data are being discussed within the model of a dielectric matrix containing two types of conductive inclusions — the graphite-like and copper nanoclusters.