## Электронно-ионный обмен на межфазных границах диэлектрик–полупроводник и его влияние на транспорт ионов в изолирующем слое

## © Е.И. Гольдман

Институт радиотехники и электроники Российской академии наук, 141120 Фрязино, Россия

(Получена 11 октября 1999 г. Принята к печати 24 февраля 2000 г.)

Построена теория ионного переноса в изолирующих слоях на поверхности полупроводников. Учтены процессы нейтрализации ионов, распада нейтральных ассоциатов ион + электрон, ионного дрейфа и диффузии нейтральных ассоциатов. Теория позволяет разрешить противоречие в интерпретации экспериментальных данных о ионной деполяризации слоев SiO<sub>2</sub>, которые проявляют себя взаимоисключающе: и как система ионных ловушек с широким распределением времен жизни, и как среда со свободными ионами. Роль ловушек играют нейтральные ассоциаты; широкое распределение времен жизни обусловлено разбросом длин туннелирования электронов при распаде ассоциатов. Повышение степени ионизации при квазистационарном уменьшении электрического поля обеспечивает плавный переход от совокупности малоподвижных нейтральных ассоциатов к ансамблю свободных ионов.

Исследования генерации и миграции ионов в изолирующих слоях на поверхности полупроводников ведутся уже несколько десятилетий [1-4], однако современные представления о природе ионного переноса, в том числе и в такой технологически отработанной структуре как SiO<sub>2</sub>/Si, достаточно противоречивы. В зависимости от типа эксперимента диэлектрик проявляет себя взаимоисключающе: либо как система ионных ловушек с широким распределением времен жизни (изотермическая или термостимулированная поляризация и деполяризация изолятора [5-9]), либо как среда со свободными ионами (время-пролетный эффект [10,11], динамические вольтамперные характеристики (BAX) [12-16]). В данной работе на основе электронно-ионного обмена у границы раздела (ГР) диэлектрик-полупроводник [17] построена феноменологическая теория ионного транспорта в изолирующем слое, разрешающая указанное противоречие.

Основные положения модели [17] состоят в следующем. В изолирующем слое структуры металлдиэлектрик-полупроводник (МДП) на основе полупроводника *n*-типа присутствуют подвижные ионы, для определенности — с элементарным положительным зарядом, и они могут перемещаться только в пределах диэлектрического промежутка. Каждый ион и окружающая его матрица изолятора порождают локализованное электронное состояние. При заполнении этого состояния образуется нейтральный ассоциат (НА) ион + электрон. Ионный дрейф, диффузия НА, а также процессы их образования (нейтрализация ионов при переходе электронов из полупроводника на локализованные состояния) и распада (ионизация НА при переходе электронов с локализованных состояний в полупроводник или в зону проводимости диэлектрика) определяют механизм ионного транспорта по изолятору. В достаточно больших стационарных поляризующих полях ( $V_i > 0$ ,  $V_i = V_g - V_s - V_c$ , V<sub>i</sub> — падение потенциала на изоляторе, V<sub>s</sub> — падение напряжения на полупроводнике, V<sub>c</sub> — контактная разность потенциалов на границе затвор-полупроводник)

ионы концентрируются у границы раздела диэлектрикполупроводник. При этом происходит их частичная нейтрализация за счет туннельных переходов электронов из поверхностного слоя обогащения полупроводника на локализованные состояния и обратно. Образовавшиеся НА диффундируют в глубь изолятора, где термически распадаются на ионы и электроны. Последние практически мгновенно по сравнению с временами ионного переноса уходят на соответствующий электрод. Вновь образовавшиеся ионы под действием электрического поля в зависимости от его направления будут либо возвращаться к ГР диэлектрик–полупроводник (поляризующие поля, рис. 1, a), либо уходить к контакту с полевым электродом (деполяризующие поля, рис. 1, b). Массоперенос в изоляторе описывается уравнениями

$$\frac{\partial M}{\partial t} - D \frac{\partial^2 M}{\partial z^2} + \frac{M}{\tau} + \frac{M}{\tau_i} - \frac{N}{\tau_n} = 0, \qquad (1)$$

$$\frac{\partial N}{\partial t} + \frac{1}{q}\frac{\partial j}{\partial z} + \frac{N}{\tau_n} - \frac{M}{\tau_i} - \frac{M}{\tau} = 0.$$
(2)

Здесь N и M — объемные концентрации ионов и НА в диэлектрике; z = 0 — координата ГР, в области z < 0 расположен полупроводник, а в области z > 0 изолятор (рис. 1); D — коэффициент диффузии НА;  $\tau$  — характерное время распада НА, связанного с переходом электрона в зону проводимости диэлектрика;  $\tau_i(z)$  — характерное время ионизации находящегося на расстоянии z от ГР ассоциата, связанной с уходом электрона в полупроводник;  $\tau_n(z)$  — характерное время нейтрализации находящегося на расстоянии z от ГР иона, связанной с приходом электрона из полупроводника; q — элементарный заряд;  $j = q\mu NF - \mu T \partial N/\partial z$  плотность тока ионов; F — электрическое поле в изоляторе.

Вероятности ионизации  $\tau_i^{-1}(z)$  и нейтрализации  $\tau_n^{-1}(z)$  резко спадают с ростом *z* вследствие увеличения



**Рис. 1.** Схемы ионного транспорта у границы раздела диэлектрик-полупроводник при поляризующем (*a*) и деполяризующем (*b*) напряжениях. Обозначения: кружок — нейтральный ассоциат ион + электрон, кружок со знаком "плюс" положительный ион,  $e^-$  — электрон, Z — координата, область Z < 0 — полупроводник, Z > 0 — изолятор,  $E_c$  — дно зоны проводимости.



**Рис. 2.** Потенциальный рельеф для электрона, связанного с ионом в нейтральный ассоциат, в окрестности границы раздела диэлектрик-полупроводник. I — потенциал с учетом сил изображения, 2 — прямоугольный барьер высоты  $U_0$ , обусловленный разрывом зон проводимости на контакте полупроводник-изолятор,  $\tilde{z}$  — координата электрона,  $\tilde{z} < 0$  — полупроводник,  $\tilde{z} > 0$  — диэлектрик, z — координата иона,  $E_c$  — дно зоны проводимости,  $E_F$  — уровень Ферми,  $\Delta$  — понижение барьера силами изображения,  $E_{\rm NA}$  — энергия электрона в нейтральном ассоциате, отсчитанная от дна зоны проводимости изолятора,  $\Delta E$  — расстояние от уровня электрона в нейтральном ассоциате до уровня Ферми.

длины туннелирования и высоты туннельного барьера. Основной вклад в потенциал  $U(\tilde{z})$  (рис. 2,  $\tilde{z}$  — координата электрона), ограничивающий скорость перехода электронов из полупроводника на локализованные состояния, порожденные ионами, и обратно, вносят разрыв зон проводимости на ГР полупроводник–диэлектрик  $U_0$ 

Физика и техника полупроводников, 2000, том 34, вып. 8

и силы изображения от зарядов иона и электрона. При  $\tilde{z} > 0$  без учета внешнего электрического поля

$$U(\tilde{z}) = U_0 - (q^2/\kappa_{i\text{LF}}) \{1/|z - \tilde{z}| - [1/(z + \tilde{z})] \\ \times (\kappa_{s\text{LF}} - \kappa_{i\text{LF}})/(\kappa_{s\text{LF}} + \kappa_{i\text{LF}})\} \\ - (q^2/\tilde{z}\kappa_{i\text{HF}}) (\kappa_{s\text{HF}} - \kappa_{i\text{HF}})/(\kappa_{s\text{HF}} + \kappa_{i\text{HF}}),$$

где z — координата иона,  $\kappa_i$  и  $\kappa_s$  — диэлектрические проницаемости изолятора и полупроводника, индексы LF и HF означают низкую и высокую частоты [18]. Силы изображения существенно снижают барьер при достаточно малых z. Так, для ГР Si-SiO<sub>2</sub> ( $\kappa_{sLF} = \kappa_{sHF} = 11.5$ ,  $\kappa_{i\text{LF}} = 3.9, \ \kappa_{i\text{HF}} = 2.13 \ [18])$  реальный барьер (рис. 2, кривая 1) ниже прямоугольного (рис. 2, линия 2) на величину  $\Delta(z) = 1.07q^2/z = 1.54 \ (10 \ \text{Å}/z)$  эВ. При больших z хорошей аппроксимацией функции  $\tau_i(z)$  является выражение:  $\tau_i = \bar{\tau}_i \exp(z/\delta_\infty)$ , где  $\bar{\tau}_i$  — не зависящий от координаты сомножитель;  $\delta_{\infty} = (\hbar^2/8mE_{\rm NA})^{1/2}$  характерная длина затухания волновой функции электрона в глубь диэлектрика; т — эффективная масса электрона в изоляторе; *E*<sub>NA</sub> — энергия электрона в НА, отсчитанная от дна зоны проводимости изолятора. По данным [19] для SiO<sub>2</sub>  $\delta_{\infty} \approx (U_0/E_{\rm NA})^{1/2}$ . Отношение темпов ионизации и нейтрализации определяется расстоянием  $\Delta E$  от уровня электрона в НА до уровня Ферми:  $\tau_n/\tau_i = \exp(\Delta E/T)$ . Отсюда следует возможность управления степенью нейтрализации ионов путем изменения положения уровня Ферми на ГР. Разумеется, если уровень электрона в НА расположен достаточно высоко над дном зоны проводимости полупроводника, то нейтрализация невозможна. Электрическое поле в диэлектрике описывается уравнением Пуассона:

$$\frac{\partial F}{\partial z} = \frac{4\pi q N}{\kappa_i},\tag{3}$$

 $F|_{z\to\infty} = F_h$  (а точнее —  $F|_{z=h} = F_h$ ), где  $F_h$  — поле у контакта изолятора с затвором.

Рассмотрим стационарное распределение ионов и НА у ГР в поляризующем поле F < 0 (рис. 1, *a*). Граничные условия к системе уравнений (1), (2): при z = 0 - j = 0 и  $\partial M/\partial z = 0$  (условия отсутствия переноса ионов и НА через ГР), при  $z \to \infty - M = 0$  и N = 0. Из (1) и (2) получаем

$$\frac{d^2M}{dz^2} - \frac{M}{\lambda^2} - \frac{M}{D\tau_i} + \frac{N}{D\tau_n} = 0, \qquad (4)$$

$$j - qD\frac{dM}{dz} \equiv q\mu NF - \mu T\frac{dN}{dz} - qD\frac{dM}{dz} = 0.$$
 (5)

Здесь  $\lambda = (D\tau)^{1/2}$  — длина диффузии НА. Соотношение (5) (отсутствие суммарного потока ионов и НА) математически описывает незатухающую циркуляцию частиц у ГР изолятор–полупроводник. Нейтральные ассоциаты, образовавшиеся после нейтрализации ионов, диффундируют в глубь диэлектрика, где термически распадаются на ионы и электроны. Вновь образовавшиеся ионы под действием электрического поля дрейфуют к ГР, где опять нейтрализуются и т. д. Уравнение (4) с условиями  $(dM/dz)|_{z=0} = 0$  и  $M|_{z=\infty} = 0$  можно представить в интегральной форме:

$$M = \frac{M_0}{2} \exp\left(-\frac{z}{\lambda}\right) + \frac{\tau}{2\lambda}$$
$$\times \int_0^\infty \exp\left(-\frac{|z_1 - z|}{\lambda}\right) \left(\frac{N}{\tau_n} - \frac{M}{\tau_i}\right) dz_1, \quad M_0 = M|_{z=0}.$$
(6)

Из уравнений (3) и (5) находим

$$N_0 + (qD/\mu T)M_0 = (2\pi q^2 N_s^2/\kappa_i T) + (q|F_h|N_s/T),$$

где  $N_0 = N|_{z=0}$ ,  $N_s = \int_0^\infty Ndz$  (в рассматриваемом случае  $F_h < 0$ ). Будем полагать, что  $(\lambda/\tau_n)d\tau_n/dz \gg 1$ ,  $(T/q|F|\tau_n)d\tau_n/dz \gg 1$ , т.е. функции  $\tau_i(z)$  и  $\tau_n(z)$  изменяются с z гораздо быстрее, чем M(z) и N(z). Тогда из (6) следует

$$M \cong M_0 \exp\left(-\frac{z}{\lambda}\right), \ N_0 = M_0 \left[\frac{\tau_{n0}\lambda}{\tau\delta_0} + \exp\left(\frac{\Delta E_0}{T}\right)\right],$$

 $\delta_0 = \tau_{n0} \int_0^{\infty} \tau_n^{-1} dz$  — характерное расстояние, определяющее зависимость  $\tau_n$  от z,  $\tau_{n0} = \tau_n|_{z=0}$ ,  $\Delta E_0 = \Delta E|_{z=0}$ (здесь использовано равенство  $\tau_n/\tau_i = \exp(\Delta E/T)$ ). Формулы (7) отличаются от точного соотношения (6) на малые члены порядка  $(\delta_0/\lambda) \ll 1$ , но именно они обеспечивают исчезновение потока НА при z = 0. Для степени ионизации частиц у ГР [ $\gamma \equiv N_s/(N_s + M_s)$ ,  $M_s = \int_0^{\infty} M dz$ ,  $N_s + M_s + N_{s0}$ ,  $N_{s0}$  — концентрация частиц у ГР] получаем

$$\gamma = \frac{2\gamma_{\rm H}\gamma_{\rm L}}{\gamma_{\rm L} + \sqrt{\gamma_{\rm L}^2 + 4\gamma_{\rm H}^2(1 - \gamma_{\rm L})}} , \qquad (8)$$

$$\gamma_{\rm H}^{-1} = 1 + \frac{q|F_h|\lambda}{T\left[\frac{\tau_{n0}\lambda}{\tau\delta_0} + \frac{qD}{\mu T} + \exp\left(\frac{\Delta E_0}{T}\right)\right]},$$
$$\gamma_{\rm L}^{-1} = \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{2\pi q^2 \lambda N_{s0}}{\kappa_i T\left[\frac{\tau_{n0}\lambda}{\tau\delta_0} + \frac{qD}{\mu T} + \exp\left(\frac{\Delta E_0}{T}\right)\right]}}.$$
(9)

Из формул (8), (9) явствует физический смысл введенных параметров:  $\gamma_{\rm H}$  — степень ионизации частиц в сильных полях<sup>1</sup>, а  $\gamma_{\rm L}$  — в слабых. Величина  $\Delta E_0$  уменьшается с ростом модуля электрического поля у затвора и концентрации ионов,  $\exp(\Delta E_0/T) = \exp(\Delta E_{\rm FB}/T)(n_d/n_0)$ ,  $n_0 \approx n_d + (2\pi q^2/\kappa_s T)[N_s + (\kappa_i|F_h|/4\pi q)]^2$ ,  $\Delta E_{\rm FB}$  — расстояние от уровня электрона на НА до уровня Ферми

полупроводника в состоянии плоских зон,  $n_0$  и  $n_d$  — концентрации электронов на ГР и в объеме полупроводника соответственно. Стационарный ток через изолятор определяется темпом объемной генерации электронов при распаде НА:

$$I = -\frac{qSM_s}{\tau}.$$
 (10)

Здесь *S* — площадь структуры, а знак минус указывает на направление тока — от затвора к полупроводнику. С увеличением электрического поля ток по модулю растет сублинейно и достигает насыщения  $|I| = qSN_{s0}/\tau$  при полной нейтрализации ионов.

Рассмотрим теперь переходный процесс, связанный с транспортом ионов и НА после переключения поляризующего поля (F < 0) на деполяризующее (F > 0). Пусть после изменения направления поля поверхность полупроводника обедняется настолько, что нейтрализацией ионов можно пренебречь ( $\Delta E_0$  достаточно велико), и время пролета  $\tau_d \sim h/\mu F$  гораздо меньше времени жизни НА в объеме изолятора т. Релаксация поляризации определяется четырьмя эффектами: ионизацией НА путем туннельного перехода электронов в полупроводник, пролетом образовавшихся ионов, диффузией НА к ГР с распадом на границе или в объеме диэлектрика. Соответственно можно выделить три характерных временных диапазона. В первом ток деполяризации обусловлен туннельными электронными переходами и пролетом ионов, возникающих при распаде НА у ГР в узком слое, внутри которого  $\tau_i(z) \leq \tau_d$ . Во втором происходит ионизация НА в слое толщиной  $z_*$ , определяемой условием

$$\tau_d \ll \tau_i(z_*) = \min(z_*^2/D, \tau),$$

т.е. пролет ионов не ограничивает деполяризацию, а диффузия НА не существенна. В третьем, заключительном диапазоне релаксация определяется распадом НА в объеме изолятора и диффузией НА в приповерхностную область  $z < z_*$ , где темп их ионизации выше. Первому участку (время-пролетный эффект) отвечают уравнения массопереноса

$$\frac{\partial M}{\partial t} + \frac{M}{\tau_i} = 0, \tag{11}$$

$$\frac{\partial N}{\partial t} + \mu \frac{\partial (NF)}{\partial z} - \frac{M}{\tau_i} = 0.$$
(12)

Пренебрежение диффузией в (12) обосновано при  $V_i \gg T/q$  и  $F_0 > 0$ ,  $F_0 = F|_{z=0}$ . Начальное условие

$$M|_{t=0} = M_i(z) = (M_{si}/\lambda_i) \exp(-z/\lambda_i)$$

отвечает стационарному распределению частиц (7),  $M_{si}$  — начальная плотность НА. Граничное условие  $N|_{z=0} = 0$  обеспечивает отсутствие массопереноса через ГР. Из уравнений (3) и (12) следует соотношение для тока через изолятор:

$$I = qS\left(\frac{\kappa_i}{4\pi q}\frac{\partial F}{\partial t} + \mu FN + \int_{z}^{h}\frac{M(z_1)}{\tau_i(z_1)}dz_1\right).$$
 (13)

Физика и техника полупроводников, 2000, том 34, вып. 8

<sup>&</sup>lt;sup>1</sup> Выражение для  $\gamma_{\rm H}$  было найдено в работе [17] в пределе больших  $V_i$ , когда поле *F* можно считать однородным.

Время пролета  $au_d$  определяется из равенства  $\int_{0}^{ au_d} \mu F_h dt = h$ . При  $au < au_d$  из (13) имеем

$$I = \frac{\kappa_i S}{4\pi} \frac{dF_h}{dt}, \qquad I = qS \left( \frac{\kappa_i}{4\pi q} \frac{\partial F_0}{\partial t} + \int_0^h \frac{M}{\tau_i} dz \right)$$

Отсюда с учетом (11) находим

$$F_h-F_0=ar{F}\equiv (4\pi q/\kappa_i)\int\limits_0^h (M_i-M)dz+(4\pi qN_{si}/\kappa_i),$$

где  $N_{si}$  — начальная плотность ионов. Еще одно соотношение для тока получается после интегрирования равенства (13) по координате:

$$I = \frac{\kappa_i S}{8\pi h} \left[ -2\frac{dV_i}{dt} + \mu \left(F_h^2 - F_0^2\right) + \frac{8\pi q}{\kappa_i} \int_0^h z \frac{M}{\tau_i} dz \right].$$

Учитывая, что  $V_s = 2\pi q n_d w^2 / \kappa_s$ ,  $4\pi q n_d w = \kappa_i F_0$ , где w — толщина слоя обеднения у поверхности полупроводника, для тока имеем

$$I = \frac{\kappa_i \kappa_s \mu S \bar{F}(2F_0 + \bar{F})}{8\pi(\kappa_s h + \kappa_i w)} + \frac{qS}{(\kappa_s h + \kappa_i w)}$$
$$\times \int_0^h (\kappa_i w + \kappa_s z) \frac{M}{\tau_i} dz - \frac{\kappa_i \kappa_s S}{4\pi(\kappa_s h + \kappa_i w)} \frac{dV_c}{dt}.$$
 (14)

Три слагаемых в выражении (14) отвечают трем различным механизмам переноса. Первое описывет пролет свободных ионов, существовавших у ГР при t = 0 и образовавшихся при распаде НА за время t. Второе электронные туннельные переходы, обусловливающие распад НА. Третье — емкостной ток, связанный с изменением контактной разности потенциалов (это слагаемое отлично от нуля только для термостимулированного режима). В случае изотермической деполяризации первая компонента тока растет со временем, а вторая — падает. Отметим, что в теории опустошения поверхностных ловушек на контакте изолятора с металлом [20] ток растет со временем  $(I|_{t=0} = 0)$ , так как зависимость I(t) не содержит слагаемого, аналогичного второму в выражении (14). Это различие обусловлено неучетом в работе [20] разделения в пространстве электронного и ионного зарядов при опустошении ловушек (в рассматриваемом здесь случае данное разделение происходит на расстоянии w + z).

Решение уравнения (11) имеет вид

$$M = M_i(z) \exp[-t_{\text{eff}}/\tau_i(z,t)],$$
$$t_{\text{eff}} = \tau_i(z,t) \int_0^t dt_1/\tau_i(z,t_1).$$

Физика и техника полупроводников, 2000, том 34, вып. 8

Время ионизации  $\tau_i$  как функцию координаты и температуры можно представить следующим образом:  $\tau_i = \bar{\tau} \exp(\varepsilon)$ , где  $\bar{\tau} = \text{const}$ ,  $\varepsilon = \varepsilon(z, T) \gg 1$ ;  $\varepsilon$  растет с увеличением z и убывает с ростом T, причем

$$\delta \equiv (\partial \varepsilon / \partial z)^{-1}, \qquad \delta|_{z=0} = \delta_0, \qquad \delta|_{z \to \infty} = \delta_{\infty}.$$

Если T = const, то  $t_{\text{eff}} = t$ ; если  $T = t_0 + k\beta_T t$ (термостимулированный режим), то  $t_{\text{eff}} \simeq t$  при  $|(T - T_0)\partial\varepsilon/\partial T| \ll 1$  и  $t_{\text{eff}} \simeq (k\beta_T |\partial\varepsilon/\partial T|)^{-1}$  при  $|(T - T_0)\partial\varepsilon/\partial T| \gg 1$ . В последнем случае  $t_{\text{eff}}$  время, за которое  $\tau_i$  уменьшается в *e* раз. Единообразное описание релаксационных сигналов в изотермическом и термостимулированном режимах путем введения обобщенного времени  $t_{\text{eff}}$  характерно для процессов с мономолекулярной кинетикой [21]. Широкое распределение времен туннельной ионизации  $\tau_i$  позволяет провести аналогию между НА и локализованными электронными состояниями с большой дисперсией времен жизни [21,22] и представить функцию M(z) в виде "ступеньки"

$$M(z) = \begin{cases} 0, & z < z_m \\ M_i(z), & z > z_m \end{cases}, \quad \varepsilon(z_m, T) = \ln\left(\frac{t_{\text{eff}}}{\bar{\tau}}\right), \quad (15)$$

где  $z_m$  — координата, разделяющая области уже распавшихся ( $z < z_m$ ) и еще сохранившихся НА ( $z > z_m$ ). При таком подходе величину  $\delta$  следует трактовать как характерный масштаб "размытия" ступеньки. Поэтому приближение (15) справедливо при  $\delta \ll z_m$ ,  $\lambda_i$ . Для ограниченного диапазона времен явную зависимость координаты  $z_m$  от t можно получить, разлагая функцию  $\varepsilon(z_m, T)$  в ряд:

$$z_m = \bar{z}_m + \delta \ln\left(\frac{t_{\text{eff}}}{\bar{t}}\right), \qquad \varepsilon(\bar{z}_m) = \ln\left(\frac{\bar{t}}{\bar{\tau}}\right).$$
 (16)

Здесь  $\bar{z}_m$  и  $\delta$  отвечают началу выбранного временно́го диапазона  $\bar{t} < t_{\text{eff}} < \overline{\bar{t}}$ , т.е. рассчитываются при  $t_{\text{eff}} = \bar{t}$ . Поскольку  $\varepsilon \gg 1$ , максимальное  $t_{\text{eff}} = \overline{\bar{t}}$  из данного диапазона может превышать  $\bar{t}$  на несколько порядков. Получаем

$$\bar{F} = \frac{4\pi q M_{si}}{\kappa_i} \left[ 1 - \exp\left(-\frac{\bar{z}_m}{\lambda_i}\right) \left(\frac{\bar{t}}{t_{\text{eff}}}\right)^{\frac{\delta}{\lambda_i}} \right] + \frac{4\pi q N_{si}}{\kappa_i}$$

При  $F \gg \overline{F}$  (т.е. считая  $F \approx F_0 \approx F_h$ ),  $z_m \ll \kappa_i w / \kappa_s$  выражение (14) преобразуется:

$$I = \frac{qS\kappa_s\mu FN_{si}}{(\kappa_sh + \kappa_iw)} - \frac{\kappa_i\kappa_s}{4\pi(\kappa_sh + \kappa_iw)}\frac{dV_c}{dt} + \frac{qSM_{si}}{(\kappa_sh + \kappa_iw)} \left\{\mu\kappa_sF\left[1 - \exp\left(-\frac{\bar{z}_m}{\lambda_i}\right)\left(\frac{\bar{t}}{t_{\rm eff}}\right)^{\frac{\delta}{\lambda_i}}\right] + \frac{\delta\kappa_iw}{\lambda_i t_{\rm eff}}\exp\left(-\frac{\bar{z}_m}{\lambda_i}\right)\left(\frac{\bar{t}}{t_{\rm eff}}\right)^{\frac{\delta}{\lambda_i}}\right\}.$$
 (17)

Как явствует из (17), в случае T = const ток как функция времени имеет минимум при  $t = t_{\min} \simeq \kappa_i^2/4\pi q n_d \mu \kappa_s$ . Растущая с t составляющая I обусловлена увеличением (из-за распада НА) числа ионов, участвующих в пролете. Спадающая со временем ветвь тока связана с электронными туннельными переходами при ионизации НА. В термостимулированном режиме определяющую роль играет температурная зависимость подвижности. На фоне слабо зависящих от T компонент, отвечающих изменению контактной разности потенциалов и туннельной ионизации НА, ток пролета ионов экспоненциально растет с температурой.

В слабых полях  $F_h < 4\pi q N_s / \kappa_i$  в изоляторе в интервале (0,  $z_0$ ) образуется резервуар свободных ионов, а в полупроводнике (поскольку  $F_0 < 0$ ) — слой обогащения. Граница резервуара  $z = z_0$  определяется из условия  $F(z_0) = 0$ ; физически она имеет тот же смысл, что и виртуальный катод в теории токов, ограниченных пространственным зарядом [23]. Из уравнений (3) и (13) находим

$$I = \frac{\kappa_i S}{4\pi} \frac{dF_h}{dt},$$

$$I = -\frac{\kappa_i S}{4\pi h} \frac{dV_c}{dt} + \frac{\mu \kappa_i S}{8\pi h} F_h^2 + \frac{qS}{h} \int_{z_0}^h (z - z_0) \frac{M}{\tau_i} dz.$$
 (18)

При выводе (18) полагалось  $z_0 \ll h$ , а также пренебрегалось изменениями набега потенциала на области локализации ионного резервуара и на слое обогащения полупроводника. Если поле мало, т.е.

$$F_h \ll \left[ (8\pi q/\mu\kappa_i) \int_{z_0}^h (z-z_0)(M/\tau_i)dz \right]^{1/2},$$

то ток определяется электронными туннельными переходами при распаде НА. В приближениях (15), (16) и при условии  $\bar{z}_m \gg z_0$  имеем

$$I = -\frac{\kappa_i S}{4\pi h} \frac{dV_c}{dt} + \frac{q S M_{si} \bar{z}_m}{h \lambda_i \bar{t}} \exp\left(-\frac{\bar{z}_m}{\lambda_i}\right) \left(\frac{\bar{t}}{t_{\text{eff}}}\right)^{1 + \frac{\sigma}{\lambda_i}}.$$
 (19)

При  $t > t_i$ , где  $t_i$  — момент времени, начиная с которого выполняются неравенства

$$F_h \gg \left[(8\pi q/\mu\kappa_i)\int\limits_{z_0}^h(z-z_0)(M/ au_i)dz
ight]^{1/2}, 
onumber \ \mu F_h^2 \gg |dV_c/dt|,$$

ток обусловлен пролетом фронта свободных ионов

$$I = \frac{\mu}{2h} \frac{F_i^2}{\left(1 - \frac{F_i}{2h} \int_{t_i}^t \mu(t_1) dt_1\right)^2}, \qquad F_i \equiv F_h(t_i).$$
(20)

Общая картина зависимости тока деполяризации от времени при  $t < \tau_d$  и высокой начальной степени нейтрализации следующая. В изотермическом случае вначале ток I связан с электронными туннельными переходами при ионизации НА и уменьшается со временем. По мере накопления числа свободных ионов обусловленная их пролетом компонента тока становится основной и ток Iрастет с t. С увеличением  $V_g$  время пролета уменьшается и нарастающая ветвь тока исчезает. В термостимулированном режиме из-за экспоненциального увеличения подвижности ионов с температурой амплитуда нарастающей со временем ветви тока гораздо больше, чем в изотермическом режиме, и на ее фоне спад зависимости I(t) может оказаться не наблюдаемым.

В диапазоне времен  $\tau_i(z_*) \gg t \gg \tau_d$  запаздывание, связанное с пролетом свободными ионами изолирующего промежутка, уже не существенно, а диффузия и распад НА в объеме диэлектрика (с временем жизни  $\tau$ ) еще не успевают развиться. Ток деполяризации определяется электронными туннельными переходами при ионизации НА, расположенных в области  $z < z_*$ . В приближениях (15), (16) имеем<sup>2</sup>

$$I = qS \int_{0}^{h} \frac{M}{\tau_{i}} dz \simeq \frac{qSM_{si}\delta}{\bar{\tau}\lambda_{i}} \exp\left(-\frac{\bar{z}_{m}}{\lambda_{i}}\right) \left(\frac{\bar{\tau}}{t_{\text{eff}}}\right)^{1+\frac{\delta}{\lambda_{i}}}.$$
 (21)

Выражения (17), (19) и (21) отвечают разным временны́м диапазонам. Поэтому  $\bar{z}_m$  и  $\bar{t}$  можно считать монотонно растущими функциями времени, более медленными, чем  $\delta \ln(t_{\text{eff}}/\tau)$  и  $t_{\text{eff}}$  соответственно; величина  $\delta = \delta(\bar{z}_m, T)$  спадает с t монотонно при T = constи имеет максимум в термостимулированном режиме;  $\delta|_{t=0} = \delta_0, \delta|_{t\to\infty} = \delta_{\infty}$ .

Заключительная стадия деполяризации при  $t \gg \tau_i(z_*) \equiv \min(z_*^2/D, \tau)$  определяется распадом НА в объеме изолятора и диффузией НА в приповерхностную область  $z < z_*$ , где темп их ионизации выше. Данной стадии в области  $z > z_*$  соответствует уравнение массопереноса

$$rac{\partial M}{\partial t} - Drac{\partial^2 M}{\partial z^2} + rac{M}{ au} = 0,$$

а граничные и начальное условия суть

$$M(z_*,t) = 0, \quad M|_{z \to \infty} = 0, \quad M[z,\tau_i(z_*)] = M_*(z).$$

При  $z - z_* \gg \delta(z_*)$  начальное распределение НА  $M_*(z)$  совпадает со стационарным  $M_i(z)$ . Вблизи  $z = z_*$  на некоторой длине  $\bar{\delta} \simeq \delta(z_*)$  функция  $M_*(z)$  спадает до нуля. (Если пренебречь этим обстоятельством и принять  $M_*(z) = M_i(z)$ , то из-за противоречия с граничным условием  $M(z_*) = 0$  выражение для тока при  $t \to \tau_i(z_*)$  будет расходиться как  $[t - \tau_i(z_*)]^{-1/2}$ ). Используя приближение  $M_*(z) = (z - z_*)M_i(z_*)/\bar{\delta}$  при  $z - z_* < \bar{\delta}$  и  $M_*(z) = M_i(z)$  при  $z - z_* > \bar{\delta}$ , пренебрегая зависимостью  $z_*$  от времени, вводя переменную  $\theta = \int_{\tau_i(z_*)}^t D(t_1)\lambda_i^{-2}dt_1$  и учитывая, что

<sup>&</sup>lt;sup>2</sup> При T = const этот результат получен в работе [17].

$$I = -qSd/dt \left(\int_{z_*}^h Mdz\right)$$
, получаем $I = qSM_{si} \exp\left[-rac{z_*}{\lambda_i} - \int_0^t rac{dt_1}{ au(t_1)}
ight] \left(rac{1}{ au} + rac{D}{\lambda_iar{\delta}}
ight),$ 

$$\theta \ll \frac{\bar{\delta}^2}{\lambda_i^2},$$
(22a)

$$I = qSM_{si} \exp\left[-\frac{z_*}{\lambda_i} - \int_0^t \frac{dt_1}{\tau(t_1)}\right] \left(\frac{1}{\tau} + \frac{D}{\lambda_i^2 \sqrt{\pi\theta}}\right),$$
$$\frac{\bar{\delta}^2}{\lambda_i^2} \ll \theta \ll 1, \qquad (226)$$

$$I = \frac{qSM_{si}}{\sqrt{\pi\theta}} \exp\left[-\frac{z_*}{\lambda_i} - \int_0^t \frac{dt_1}{\tau(t_1)}\right] \left(\frac{1}{\tau} + \frac{D}{2\lambda_i^2\theta}\right),$$
$$\theta \gg 1. \tag{22b}$$

Если  $D\tau \gg \lambda_i^2$ , то деполяризация определяется диффузией НА к поверхности диэлектрика. При T = const ток вначале не изменяется со временем (см. (22a)), а затем начинает уменьшаться как  $[t - \tau_i(z_*)]^{-1/2}$  (см. (22б)), на конечном этапе ток I спадает как  $[t - \tau_i(z_*)]^{-3/2}$  (см. (22b)). В термостимулированных условиях зависимость I(t) имеет максимум. На нарастающей ветви ток в соответствии с (22a) и (22б) растет вначале пропорционально D(T), а затем пропорционально  $D^{1/2}(T)$ . На спадающей ветви, согласно (22в),  $I(t) \propto D^{-1/2}(T)$ . При  $\lambda_i \bar{\delta} \ll D\tau \ll \lambda_i^2$  на начальном этапе деполяризация связана с диффузионным размытием края исходного распределения НА (область  $z - z_* < \bar{\delta}$ ), а в дальнейшем — с распадом НА в объеме изолятора. При T = const ток

$$t-\tau_i(z_*)<\bar{\delta}^2/D$$

 $I \propto \exp(-t/\tau)$  (см. (22а)), в интервале

$$\bar{\delta}^2/D < t - \tau_i(z_*) < \tau^2 D/\pi \lambda_i^2$$

 $I \propto [t - \tau_i(z_*)]^{-1/2}$ , а в области

$$t > \tau^2 D / \pi \lambda_i^2$$

 $I \propto \exp(-t/\tau)$  (см. (22б)). В термостимулированном режиме нарастающая ветвь пика I(t) с увеличением температуры T последовательно определяется температурными зависимостями D(T),  $D^{1/2}(T)$ ,  $\tau^{-1}(T)$ ; на спадающей ветви

$$I \propto \tau^{-1} \exp\left(-\int_0^t \tau^{-1}(t_1) dt_1\right).$$

Физика и техника полупроводников, 2000, том 34, вып. 8

Если  $D\tau \ll \lambda_i \bar{\delta}$ , то основную роль играет распад НА в объеме диэлектрика. Ток деполяризации описывается законом

$$I \propto \tau^{-1} \exp\left(-\int_0^t \tau^{-1}(t_1) dt_1\right),$$

типичным для мономолекулярной кинетики [21]. Таким образом, температурная зависимость тока деполяризации в термостимулированном режиме имеет два максимума: первый — низкотемпературный — связан с пролетом ионов (нарастающая ветвь) и туннельным распадом НА, сосредоточенных в слое  $z < z_*$  (спадающая ветвь); второй — высокотемпературный — обусловлен диффузией НА (изначально расположенных при  $z > z_*$ ) к ГР диэлектрик-полупроводник, а также с термическим распадом НА в объеме изолятора. Отметим, что если  $z_* \gg \lambda_i$ , то второй максимум на фоне первого не проявится.

Рассмотрим теперь изотермическую деполяризацию в режиме линейной развертки по напряжению с постоянной скоростью

$$\beta_v = |dV_g/dt| = \text{const},$$

Vg изменяется от положительного значения к отрицательному. Этот режим важен для идентификации деталей механизма переноса, так как ВАХ имеем максимум, положение которого связано со свойствами ионов и внешними факторами (температурой, скоростью развертки). Пусть в стационарном состоянии ( $V_g = \text{const}$ ) МДП структура либо поляризована при V<sub>i</sub> > V<sub>t</sub>, либо деполяризована при  $V_i < V_t$ , где  $V_t \gg T/q$  — некоторое пороговое напряжение, падающее на изолирующем промежутке. Асимметрия состояний поляризации и деполяризации (т.е. неравенство  $V_t \neq 0$ ) может быть связана, например, с более высокой способностью ионов к нейтрализации у затвора, чем у поверхности полупроводника. Перенос заряда при больших скоростях  $\beta_v$  происходит в области полей  $F_h > 0$  ( $V_i < 0$ ) и определяется проанализированными ранее процессами распада НА и пролета свободных ионов через диэлектрик. Далее, при расчете тока деполяризации будем полагать скорость  $\beta_{\nu}$ , с одной стороны, малой настолько, что транспорт ионов в изолирующем слое происходит в полях  $F_h < 0$  ( $V_i > 0$ ). В диэлектрике вблизи от поверхности полупроводника успевают устанавливаться квазистационарные пространственные распределения ионов (для чего необходимо выполнение неравенства  $\beta_{\nu} \ll \mu F_h^2$ ) и НА. Последнее предположение справедливо, если скорость уменьшения  $N_{st}$  со временем ( $N_{st} \equiv N_s + M_s$  — полное число частиц у ГР) меньше темпа распада НА в объеме изолятора, т.е.  $au_R \gg au$ , где  $au_R = N_{st} |\partial N_{st}/\partial t|^{-1}$ . С другой стороны, будем считать величину  $\beta_{\nu}$  достаточно большой, так чтобы ионный транспорт происходил в неравновесных условиях, т. е.  $V_t - V_{im} \gg T/q$ ,  $V_{im}$  — падение напряжения на изоляторе, отвечающее максимуму тока деполяризации. Тогда можно пренебрегать обратным потоком частиц, скапливающихся у затвора. Ток через образец определяется тремя составляющими — током смещения (связан с емкостью изолирующего промежутка), током возникающих при распаде НА электронов (отрицателен) и током ионного переноса через барьер высотой  $qV_i$ , созданный поляризующим напряжением:

$$I = qS[(\kappa_i\beta_v/4\pi hq) - (M_s/\tau) + i_h],$$
  
$$i_h = [\mu NF - (\mu T/q)dN/dz]|_{z=h}.$$

В квазистационарных условиях плотность потока частиц

$$\bar{i} = \mu NF - (\mu T/q)dN/dz - DdM/dz$$

не зависит от z. При достаточно малых полях

$$(h/\lambda) - (q|F_h|h/T) \gg 1$$

в "толстом" изоляторе  $(h/\lambda \gg 1)$   $i_h \simeq \bar{i}$ . Полагая  $N|_{z=h} = 0$ ,  $qV_i \gg T$  и используя выражения (7), находим

$$\bar{i} = \frac{\mu |F_h| M_s}{\lambda} \left[ \frac{\tau_{n0} \lambda}{\tau \delta_0} + \frac{qD}{\mu T} + \exp\left(\frac{\Delta E_0}{T}\right) \right] \exp\left(-\frac{qV_i}{T}\right).$$
(23)

Интегрируя сумму уравнений (1), (2) по координате, имеем

$$\frac{dN_{st}}{dt} = -\bar{i}.$$
 (24)

Поскольку барьер "высокий" ( $qV_i \gg T$ ), потоки дрейфа и диффузии частиц примерно равны ( $\mu N|F| \gg \overline{i}$ ), а зависимости N(z) и M(z) — те же, что и в стационарном случае, за исключением узкого слоя вблизи z = h, где  $N(z) \ll N_0$  и  $M(z) \ll M_0$ . Таким образом,  $M_s = (1 - \gamma)N_{st}$ ; для степени ионизации  $\gamma$  справедливы выражения (8) и (9), в которых  $N_{s0}$  нужно заменить на  $N_{st}$ . В случае слабой нейтрализации  $(1 - \gamma \ll 1)$  поверхность полупроводника обогащена:

$$V_s \ll V_i$$
 и  $dV_i/dt \simeq dV_g/dt = -\beta_v$ .

Из соотношения (8), (9) (23), (24) при

$$N_{st} \gg \kappa_i |F_h| / 2\pi q$$

следует<sup>3</sup>

$$I = qS \left\{ \frac{\kappa_i \beta_v}{4\pi hq} + \frac{q \beta_v N_{s0}}{T} \left[ \sqrt{\left| \frac{F_{hm}}{F_h} \right|} \exp\left(\frac{q V_i - q V_{im}}{2T}\right) + \sqrt{\left| \frac{F_h}{F_{hm}} \right|} \exp\left(\frac{q V_{im} - q V_i}{2T}\right) \right]^{-2} \right\}, \quad (25)$$
$$V_{im} = \frac{T}{q} \ln\left(\frac{2\pi q \mu |F_{hm}| N_{s0}}{\kappa_i \beta_v}\right), \quad \tau_R = \frac{T}{2q \beta_v} \left[ 1 + \left| \frac{F_{hm}}{F_h} \right| \exp\left(\frac{q V_i - q V_{im}}{T}\right) \right];$$

<sup>3</sup> Этот результат для ансамбля свободных ионов получен в работе [24]. а при  $N_{st} \ll \kappa_i |F_h|/2\pi q$ 

$$I = qS \Biggl\{ \frac{\kappa_i \beta_v}{4\pi hq} + \frac{q \beta_v N_{s0}}{T} \left( \frac{F_h}{F_{hm}} \right)^2 \times \exp\left[ \frac{q V_{im} - q V_i}{T} - \left( \frac{F_h}{F_{hm}} \right)^2 \exp\left( \frac{q V_{im} - q V_i}{2T} \right) \right] \Biggr\}, \quad (26)$$
$$V_{im} = \frac{T}{q} \ln\left( \frac{\mu F_{hm}^2}{\beta_v} \right),$$
$$\tau_R = \frac{T}{q \beta_v} \left( \frac{F_{hm}}{F_h} \right)^2 \exp\left( \frac{q V_i - q V_{im}}{T} \right),$$

где  $F_{hm}$  — поле у затвора, при котором ток достигает максимума ( $V_{im} \approx -hF_{hm}$ ). В выражениях (25) и (26) слагаемые, отвечающие электронному току распада НА, опущены. Это допустимо в окрестности максимума тока I(t) при  $q\beta_v\tau \geq T$ . Соотношение  $\tau_R \gg \tau$  должно выполняться при напряжениях  $V_i$ , соответствующих переходу от сильной нейтрализации к слабой. При меньших напряжениях нарушение данного неравенства несущественно, т. е. запаздывание распада и диффузии НА слабо влияет на ток, поскольку бо́льшая часть частиц уже ионизирована.

В случае сильной нейтрализации  $M_s \simeq N_{st}$ , и из уравнений (23) и (24) получаем

$$I = qS \left\{ \frac{\kappa_i \beta_v}{4\pi hq} + \frac{N_{s0}}{\tau} \left[ \left( 1 + \frac{q \beta_v \tau}{T} \right) \left| \frac{F_h}{F_{hm}} \right| \right] \\ \times \exp \left( \frac{q V_{im} - q V_i}{T} \right) - 1 \exp \left[ - \left( 1 + \frac{T}{q \beta_v \tau} \right) \right] \\ \times \left| \frac{F_h}{F_{hm}} \right| \exp \left( \frac{q V_{im} - q V_i}{T} \right) \right] \right\},$$
(27)  
$$V_{im} = \frac{T}{q} \ln \left\{ \frac{\mu |F_{hm}| \tau}{\lambda} \left( 1 + \frac{q \beta_v \tau}{T} \right)^{-1} \\ \times \left[ \frac{\tau_{n0} \lambda}{\tau \delta_0} + \frac{q D}{\mu T} + \exp \left( \frac{\Delta E_0}{T} \right) \right] \right\},$$
$$\tau_R = \tau \left( 1 + \frac{q \beta_v \tau}{T} \right)^{-1} \left| \frac{F_{hm}}{F_h} \right| \exp \left( \frac{q V_i - q V_{im}}{T} \right).$$

Условие  $\tau_R \gg \tau$  в максимуме тока (при  $V_i = V_{im}$ ) не выполняется. Это означает, что ионы покидают ГР быстрее, чем успевают распадаться НА; формула (27) справедлива только на растущей ветви ВАХ в области напряжений

$$V_i - V_{im} \gg (T/q)[1 + (q\beta_v \tau/T)].$$

Динамическая ВАХ в случае слабой нейтрализации представляет собой узкий (с шириной  $\sim T/q$ ) пик ионного тока на фоне двух компонент — постоянного тока смещения и обусловленного распадом НА электронного тока, малого по сравнению с амплитудой ионного пика.

Физика и техника полупроводников, 2000, том 34, вып. 8

Нарастающая ветвь I вдали от его максимума не зависит от величины  $\beta_{v}$ :

$$(I-I_{\infty})\propto \exp(-qV_i/T),$$

где  $I_{\infty} = I(V_i \rightarrow \infty)$ . При малых концентрациях частиц ( $N_{st} \ll \kappa_i |F_h|/2\pi q$ ) полуширина пика со стороны нарастающей ветви больше, чем со стороны спадающей. При больших  $N_{st}$   $(N_{st} \gg \kappa_i |F_h|/2\pi q)$  пик симметричен. Положение максимума сдвигается с увеличением  $\beta_v$  и с уменьшением N<sub>s0</sub> в сторону деполяризующих напряжений. В случае сильной нейтрализации пик тока деполяризации существенно несимметричен — его спадающая ветвь гораздо более пологая, чем нарастающая. Ионная составляющая в пике порядка электронной, связанной с распадом НА. На нарастающей ветви вдали от максимума ток не зависит от величины  $\beta_{v}$ , разность  $I-I_{\infty}$  увеличивается с уменьшением  $V_i$  пропорционально  $\exp(-qV_i/T)$ . На спадающей ветви ток обусловлен нестационарным распадом НА и зависит не от напряжения, а от реального времени.

Развитая теория разрешает основное противоречие в интерпретации экспериментальных данных об ионной деполяризации структур Si-MOS, изолирующий слой которых проявляет себя и как система ионных ловушек с широким распределением времен жизни, и как среда с подвижными (свободными) ионами. Роль ловушек играют НА; широкое распределение времен жизни обусловлено разбросом длин туннелирования электронов при распаде ассоциатов; повышение степени ионизации в процессе квазистационарного уменьшения электрического поля обеспечивает плавный переход от совокупности малоподвижных НА к ансамблю свободных ионов. В этом смысле, чем меньше концентрация свободных электронов в объеме полупроводника, тем легче варьировать внешним полем степень нейтрализации ионов за счет сдвига уровня Ферми на ГР.

Трансформация потенциала  $U(\tilde{z})$  (рис. 2) с ростом z и гибридизация волновой функции электрона в НА с волновыми функциями зоны проводимости полупроводника приводят к модификации локализованного на ионе электронного состояния (возможно, виртуального). Уровень энергии электрона в НА при удалении от ГР полупроводник-диэлектрик повышается. Поэтому уход НА от поверхности в объем изолятора должен быть сопряжен с преодолением определенного потенциального барьера. Следовательно, в выражении для потока НА (соответственно и в уравнении (1)) должна помимо диффузионной фигурировать и дрейфовая компонента, пропорциональная подвижности и концентрации НА, а также силе, прижимающей НА к поверхности. Эта сила действует в узком слое толщиной  $\sim \delta_0$ , и соответствующая поправка не скажется на результатах, если лимитирующими эффектами стационарного массопереноса будут диффузия и распад НА в объеме диэлектрика, а не темп их отрыва от ГР. Отметим, что образование ассоциата может сопровождаться перестройкой упругих напряжений в изоляторе вокруг иона. При этом из-за различия модулей упругости полупроводника и изолятора может модифицироваться и зависимость  $E_{NA}(z)$ .

Ряд следствий представленной теории — незатухающая циркуляция частиц вблизи ГР в состоянии стационарной поляризации, квазигиперболический закон спада тока при изотермической и термостимулированной деполяризации, сдвиги пиков тока на динамических ВАХ при изменениях скорости развертки по напряжению и начальной концентрации частиц — обнаружены экспериментально [17,24,25]. Наблюдаются и два максимума у температурной зависимости тока термостимулированной деполяризации. Из-за неясности с интерпретацией их связывают с присутствием в диэлектрике ионов двух сортов [6,7]. В рамках построенной теории возможным критерием идентификации таких экспериментальных данных является зависимость формы характеристики I(T) от скорости нагрева  $\beta_T$ . Поскольку  $z_*$  уменьшается с ростом T, с увеличением  $\beta_T$  должно происходить снижение площади низкотемпературного пика на зависимости I(T)и повышение площади — под высокотемпературным.

Автор благодарен А.Г. Ждану и Г.В. Чучевой за обсуждение затронутых в работе вопросов.

## Список литературы

- [1] M. Yamin. IEEE Trans. Electron. Dev., 12, 88 (1965).
- [2] С. Зи. Физика полупроводниковых приборов (М., Мир, 1984) §7.3.2.
- [3] E.H. Nicollian, J.R. Brews. MOS (Metal Oxide Semiconductor) Physics and Technology (N.Y., 1982) ch. 15.
- [4] J.V. Verwey, E.A. Amerasekera, J. Bisschop. Rep. Progr. Phys., 53, 1297 (1990).
- [5] T.W. Hickmott. J. Appl. Phys., 46, 2583 (1975).
- [6] M.R. Boundry, J.P. Stagg. J. Appl. Phys., 50, 942 (1979).
- [7] J.P. Stagg, M.R. Boundry. J. Appl. Phys., 52, 885 (1981).
- [8] M.W. Hillen, D.G. Hemmes. Sol. St. Electron., 24, 773 (1981).
- [9] C. Choquet, C. Plossu, M. Berenguer, B. Balland. Thin Sol.
- Films, **167**, 45 (1988).
- [10] S.R. Hofstein. Appl. Phys. Lett., 10, 291 (1967).
- [11] R.J. Kriegler, T.F. Devenyi. Thin Sol. Films, 36, 435 (1976).
- [12] M. Kuhn, D.J. Silversmith. J. Electrochem. Soc.: Sol. St. Sci., 118, 966 (1971).
- [13] A.G. Tangena, J. Middelhock, N.F. de Rooij. J. Appl. Phys., 49, 2876 (1978).
- [14] A.G. Tangena, N.F. de Rooij, J. Middelhock. J. Appl. Phys., 49, 5576 (1978).
- [15] N.J. Chou. J. Electrochem. Soc.: Sol. St. Sci., 118, 601 (1971).
- [16] W. Marciniak, H.M. Przewlocki. J. Electrochem. Soc.: Sol. St. Sci. Techn., **123**, 1207 (1976).
- [17] Е.И. Гольдман, А.Г. Ждан, Г.В. Чучева. ФТП, 33(8), 933 (1999).
- [18] Т. Андо, А. Фаулер, Ф. Стерн. Электронные свойства двумерных систем (М., Мир, 1985) гл. 3.
- [19] I. Lundström, C. Svensson. J. Appl. Phys., 43, 5045 (1972).
- [20] G. Greeuw, B.J. Hoenders. J. Appl. Phys., 55, 3371 (1984).
- [21] E.I. Goldman, A.G. Zhdan. Semicond. Sci. Technol., 5, 675 (1990).
- [22] J.G. Simmons, L.S. Wei. Sol. St. Elecron., 17, 117 (1974).

- [23] М. Ламперт, П. Марк. Инжекционные токи в твердых телах (М., Мир, 1973).
- [24] Е.И. Гольдман, А.Г. Ждан, Г.В. Чучева. ФТП, **31**, 1468 (1997).
- [25] Е.И. Гольдман, А.Г. Ждан, Г.В. Чучева. ФТП, **33**(8), 962 (1999).

Редактор Т.А. Полянская

## Electron-ion exchange at insulator-semiconductor interfaces and its manifestations in the insulating layer ion transport phenomena

E.I. Goldman

Radiotechnical and Electronical Institute, Russian Academy of Sciences, 141120 Fryazino, Russia

**Abstract** The ion transport theory for insulating layers up on semiconductor surfaces is constructed. Processes of ion neutralization, neutral ion + electron associate disintegration, ion drift and neutral associate diffusion are taken into account. Theory allows to solve the contradiction in the experimental data interpretation for the ion depolarization of SiO<sub>2</sub> layers, which manifest themselves antipodally either as an ion trap system of a wide distribution of life times, or as a medium with free ions. Neutral associates play the role of ion traps, the wide distribution of the ion life times on such traps being connected with a variation of the electron tunneling length at the associate disintegration. The associate ionization degree rise in the process of the quasi-stationary electric field reduction provides a smooth transition from a set of neutral associates having low mobility to the ensemble of free ions.