Лазеры на основе двойных гетероструктур InGaAsSb(Gd)/InAsSbP ($\lambda = 3.0-3.3$ мкм) для диодно-лазерной спектроскопии

© М. Айдаралиев[¶], Т. Beyer^{*}, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

* Fraunhofer Institute of Physical Measurement Techniques,

79110 Freiburg, Germany

(Получена 27 января 2000 г. Принята к печати 27 января 2000 г.)

Приведены данные о пороговых токах, дифференциальной квантовой эффективности, спектральном составе, токовой перестройке и мощности излучения диодных мезаполосковых лазеров на основе двойных гетероструктур InGaAsSb(Gd)/InAsSbP на диапазон длин волн $\lambda = 3.0-3.3$ мкм с длиной резонатора 70–150 мкм в интервале температур 50–107 К. Получены значения пороговых токов $I_{\rm th} < 10$ мА, выходной мощности 0.5 мВт с грани и 0.43 мВт в одну спектральную моду при 77 К в непрерывном режиме генерации. Лазеры работали в одномодовом режиме до значений токов $I \leq 6I_{\rm th}$, при соотношении интенсивностей основной и неосновной мод до 650:1, скорости и диапазоне токовой перестройки до 210 см⁻¹/А и 10 см⁻¹ соответственно. Приведен пример детектирования линии метана 3028.75 см⁻¹.

1. Введение

В диапазоне длин волн $\lambda = 3-4$ мкм лежат наиболее сильные полосы поглощения метана СН₄, формальдегида H₂CO и других углеводородов, интенсивности которых на 1-2 порядка превосходят интенсивности обертонов в ближней инфракрасной области спектра, где обычно детектируются газы. Поэтому применение перестраиваемых лазеров в диапазоне $\lambda = 3.0 - 3.3$ мкм значительно расширяет возможности диодно-лазерной спектроскопии высокого разрешения и газового анализа. В последние годы активно исследуются диодные лазеры на основе двойных гетероструктур (ДГС) из твердых растворов соединений III-V и, в частности, твердых растворов на основе арсенида индия [1-4]. Однако работ, посвященных одномодовым лазерам, крайне мало. Лазеры мезаполосковой конструкции на основе таких структур имели пороговые токи $I_{\rm th} \approx 100\,{\rm mA}$ при температуре $T = 77 \, \text{K} \, [5]$ и работали в квази-одномодовом режиме в интервале токов до 2-х пороговых значений [6], что не удовлетворяет требованиям большинства практических задач.

В работе [7] было показано, что в зависимости от состава активной области и ограничивающих слоев диодных лазеров на основе ДГС InGaAsSb/InAsSbP ($\lambda = 3.0-3.6$ мкм) могут быть реализованы гетеропереходы I или II типа. Тип гетероперехода определяет различие в механизмах излучательной рекомбинации, температурных зависимостях энергии и типа поляризации излучения. Было показано также [8], что основным механизмом внутренних потерь является внутризонное поглощение (ВП) дырками с переходом их в спин-орби-

тально отщепленную зону, что приводит к ряду особенностей, в том числе, к токовой перестройке лазерной моды в коротковолновую область [9].

В этой работе, являющейся продолжением начатых ранее исследований [7–9], изучены спектральные характеристики лазеров на основе ДГС InGaAsSb/InAsSbP ($\lambda = 3.0-3.3$ мкм) с активной областью InGaAsSb, выращенной из расплава с оптимальным содержанием гадолиния, и приведен пример использования одномодовых лазеров на основе InGaAsSb(Gd) в газовом анализе.

2. Изучаемые объекты и методики исследования

Двойные гетероструктуры выращивались методом жидкофазной эпитаксии (ЖФЭ) и состояли из нелегированной подложки n-InAs (111)А (концентрация электронов $n = (1-2) \cdot 10^{16} \,\mathrm{cm}^{-3}$) и трех эпитаксиальных слоев: прилегающего к подложке широкозонного ограничивающего слоя *n*-InAs_{1-x-y}Sb_xP_y (0.05 $\leq x \leq$ 0.09, ≤ у ≤ 0.18), активной области лазера 0.09 $n-In_{1-\nu}Ga_{\nu}As_{1-\omega}Sb_{\omega}~(\nu \leq 0.07,~\omega \leq 0.07)$ и широкозонного эмиттера $p-(Zn)-InAs_{1-x-y}Sb_xP_y$ (0.05 $\leq x \leq$ 0.09, $0.09 \leq y \leq 0.18$). При выращивании активной области использовался расплав, содержащий гадолиний в количестве $X_{\text{Gd}} = 0.004 - 0.005 \, \text{ат}\%$, что, согласно [10], приводит к наименьшему содержанию остаточных примесей в твердом растворе *n*-In_{1-v}Ga_vAs_{1-w}Sb_w $(n = 5 \cdot 10^{15} \, \mathrm{cm}^{-3})$ и максимальной подвижности носителей. При этом, так же как и в работах [10,11], наблюдается увеличение интенсивности фотолюминесценции до 10 раз по сравнению со слоями, выращенными без использования Gd. Улучшение параметров слоев и снижение пороговых токов [6], связанное с использованием Gd в качестве легирующей добавки,

[¶] Fax: 7(812)247 43 24

E-mail: bmat@iropt3.ioffe.rssi.ru

обусловлено геттерирующим действием редкоземельных элементов, а именно, взаимодействием Gd с посторонними примесями, находящимися в расплаве (главным образом с Si, C, O), и формированием плохо растворимых соединений. Следствием этого является снижение концентрации дефектов (безызлучательных центров) и уменьшение свободных носителей в кристаллизующейся твердой фазе. Последнее также приводит к увеличению квантового выхода из-за уменьшения скорости оже-рекомбинации.

Толщины широкозонных слоев составляли 3-5 мкм, активной области — 1 мкм; подложка, исходно имевшая толщину 350 мкм, утонышалась до толщины ~ 100 мкм. Лазеры имели глубокую мезаполосковую конструкцию с шириной полоска w = 20 мкм и длиной резонатора L = 70-150 мкм. Структуры раскалывались на чипы размерами (70–150) × (150–300) мкм², которые припаивались *р*-слоем на медный теплоотвод.

Измерения фотолюминесценции (ФЛ) при $T = 77 \, \mathrm{K}$ проводились в импульсном режиме по схеме синхронного детектирования. Для возбуждения ФЛ использовался диодный лазер из GaAs (ЛПИ-14, длина волны излучения $\lambda = 0.8 \, \mathrm{мкm}$, мощностью $P \sim 50 \, \mathrm{Br}$, длительность импульса $\tau = 5 \, \mathrm{мкc}$, частота $f = 500 \, \mathrm{Fu}$), излучение которого направлялось на широкозонный эмиттер *P*-InAsSbP. Регистрация сигнала происходила в геометрии "на отражение". ФЛ анализировалась с использованием спектрометра ИКС-21.

Измерения электролюминесценции (ЭЛ) проводились в непрерывном режиме (*cw*) при температурах $T = 30-110 \,\mathrm{K}$ с разрешением $\leq 0.75 \,\mathrm{cm}^{-1}$; мощность излучения определялась с помощью калиброванного пироэлектрического фотоприемника. При этом излучение собиралось в телесном угле $\pi/6$ стер. Для измерения спектров пропускания излучение лазера направлялось через газовую кювету с длиной оптического пути 10 см, наполненную смесью метана и азота с концентрацией метана 1% при следующих давлениях: 1000 (атмосферном), 200, 150, 100, 50, 20, 10 гПа. Скорость токовой перестройки в области линейного увеличения тока накачки измерялась эталоном Фабри–Перо (Ge), при этом на лазер подавались импульсы тока пилообразной формы ($\tau = 150 \,\mathrm{mkc}, f = 500 \,\Gamma\,\mathrm{n}$).

Экспериментальные результаты и их обсуждение

3.1. Пороговый ток, дифференциальная квантовая эффективность и выходная мощность

На рис. 1 и 2 представлены ватт-амперные характеристики, температурные зависимости порогового тока и дифференциальной квантовой эффективности лазера на длину волны $\lambda = 3.2$ мкм с длиной резонатора L = 140 мкм. Максимальное значение мощности состави-

Рис. 1. Ватт-амперные характеристики (*cw*) лазера с длиной волны излучения $\lambda = 3.2$ мкм, L = 140 мкм при T = 100 К.

Рис. 2. Температурные зависимости порогового тока и дифференциальной квантовой эффективности лазера с длиной волны излучения $\lambda = 3.2$ мкм, L = 140 мкм.

ло 0.5 мВт с одной грани в непрерывном режиме при сборе излучения в телесном угле $\pi/6$ стер, максимальное значение мощности в одну спектральную моду составило 0.42 мВт. Увеличение мощности происходило вплоть до значений тока > $30I_{\rm th}$, при этом значения суммарной мощности с двух граней (1 мВт) в 2 раза превосходят значения, полученные в аналогичных лазерах, не оптимально легированных Gd [10].

Пороговый ток составил $I_{\rm th} = 9 \,\mathrm{MA}$ (плотность тока 320 A/см²) при 77 K (*cw*), что в 1.5 раза меньше опубликованных ранее данных для лазера с той же длиной резонатора [8] и меньше известных нам значений порогового тока для лазеров на основе ДГС, излучающих в этой области спектра. Аппроксимация экспериментальной зависимости плотности порогового тока позволяет ожидать значений плотности пороговых токов ~ 50 A/см² для лазеров с длиной резонатора ~ 1 мм, что сравнимо с лучшими данными для лазеров на основе квантовых ям [12]. Температурная зависимость порогового тока при аппроксимации функцией $\exp(T/T_0)$ характеризуется величиной $T_0 \approx 20$ K, характерной для оже-процессов. Значение дифференциальной квантовой эффективности η_d составило > 2% (10 мВт/А) при 77 K. В интервале температур T < 105 K уменьшение η_d связано с уменьшением внутреннего квантового выхода из-за увеличения скорости оже-рекомбинации. При T > 105 K внутризонное поглощение приводит к резкому уменьшению η_d и срыву лазерной генерации [8].

3.2. Спектры излучения и токовая перестройка

Как правило, лазеры с короткими резонаторами, L = 70-150 мкм, работали в одномодовом режиме при токах $I \leq 6I_{\text{th}}$. При токах $I = (3-6)I_{\text{th}}$ соотношение интенсивностей основной и наиболее сильной неосновной мод составляло не менее 100 : 1 и определялось шумами регистрирующей схемы. На рис. 3 приводится модовый состав излучения лазера при $T = 100 \, \text{K}$. При токе 150 мА соотношение интенсивностей основной и неосновной мод составило 650:1. Столь высокая стабильность одномодовой генерации может быть связана с нелинейностями при спектральном выжигании дырок или модуляции инверсной населенности из-за биений полей основной и неосновной мод [13]. Эти эффекты приводят к подавлению усиления на частотах, отличающихся на несколько межмодовых интервалов от частоты излучения, и объясняют ситуацию, представленную на рис. 3, когда при I > 50 мА генерация возникает на частоте, отстоящей от первоначальной на три межмодовых интервала.

Токовая перестройка лазерной моды обусловлена увеличением концентрации носителей заряда за порогом генерации, которое приводит к уменьшению показателя преломления активной области и сдвигу мод в коротковолновую сторону [9]. Этот процесс связан с внутризонным поглощением в валентной зоне, которое приводит к росту внутренних потерь за порогом генерации и увеличению концентрации носителей, необходимой для выполнения порогового условия. Достоинствами вышеописан-

Рис. 3. Модовая характеристика лазера при T = 100 K.

Рис. 4. Зависимость скорости токовой перестройки от длины резонатора.

ного механизма являются его высокое быстродействие, а также большая скорость токовой перестройки, которая на порядок превышает расчетное значение для скорости перестройки, обусловленной джоулевым разогревом [9].

Для простоты можно считать, что токовая перестройка обусловлена изменением показателя преломления *n*, связанным только с увеличением концентрации носителей N за порогом генерации. Производная показателя преломления по плотности тока (или концентрации носителей) постоянна ($d\bar{n}/dj = \text{const}$) в приближении внутризонного поглощения, линейно зависящего от концентрации носителей: $\alpha_i = \alpha_0 + k_0 N$, α_i — внутренние потери, α_0 — потери в активной области в отсутствие инжекции, k₀ — коэффициент внутризонного поглощения, N — концентрация инжектированных носителей. Скорость токовой перестройки при вышеуказанных допущениях обратно пропорциональна длине резонатора, поскольку $d\lambda/dI \sim d\bar{n}/dI = (1/Lw)(d\bar{n}/dj)$, где w ширина полоска. Нетрудно видеть, что эксперимент (рис. 4) хорошо согласуется с вышеприведенными предположениями.

Уменьшение длины резонатора лазера приводит к увеличению потерь на выход и внутренних потерь, вызванных внутризонным поглощением [8]. Поэтому ранее нами были исследованы лазеры с длиной резонатора до 600 мкм, хотя лазеры с короткими резонаторами привлекательны вследствие одномодовой генерации и малости пороговых токов. Увеличение внутреннего квантового выхода в лазерах в данной работе, полученное при оптимальном легировании Gd, привело к уменьшению пороговых токов, увеличению мощности излучения и возможности достижения лазерной генерации в более "коротких" лазерах, с длиной резонатора 70-140 мкм. В лазере с длиной резонатора 70 мкм было получено наибольшее значение скорости токовой перестройки $d\bar{v}/dI = 210 \, {\rm cm}^{-1}/{\rm A}$ и наибольший интервал токовой перестройки одной моды $\sim 10\,{
m cm}^{-1}~(\Delta I~=~40\,{
m mA}).$ Полученные значения превосходят параметры традиционных лазеров на ДГС в системе PbSrSe [14], имеющих при $T = 95 \text{ K } I_{\text{th}} = 510 \text{ мA}$, диапазон перестройки одной моды $\sim 5 \,\mathrm{cm}^{-1} (\Delta I = 60 \,\mathrm{mA}), \, d\bar{\nu}/dI = 80 \,\mathrm{cm}^{-1}/\mathrm{A}.$

3.3. Измерение спектров пропускания метана

На рис. 5 приводятся снятые с экрана осциллографа временные развертки пилообразного импульса тока накачки одномодового (L = 120 мкм, $d\bar{\nu}/dI = 70$ см⁻¹/A) лазера (левая шкала) и сигналов фотоприемника, ре-

Рис. 5. Осциллограммы импульса тока накачки (левая шкала) и сигналов с фотоприемника после пропускания излучения через эталон Фабри–Перо и газовую кювету, заполненную смесью 1% СН₄ и N₂ при атмосферном давлении (правая шкала).

Рис. 6. a — спектры пропускания смеси 1% CH₄ и N₂ при давлении 50 гПа и длине оптического пути 10 см (HITRAN-Database). b — экспериментальные спектры пропускания смеси 1% CH₄ и N₂ при давлениях 10, 50 и 150 гПа и спектр пропускания (HITRAN) при давлении 10 гПа.

гистрирующего излучение, прошедшее через эталон Фабри-Перо и газовую кювету, наполненную смесью 1% СН₄ и N₂ при атмосферном давлении (правая шкала). Измерения проводились при температуре лазера T = 98 K, когда был получен наиболее глубокий минимум сигнала, отвечающий поглощению метана. Соответствующие спектры пропускания для смеси, содержащей 1% СН₄ и N₂ при давлении 10, 50 и 150 гПа, приведены на рис. 6. Спектры симметричны, имеют синусоидальную форму; уменьшение ширины линии пропускания согласуется с уменьшением давления паров метана. На рисунке показаны также линия пропускания смеси 1% CH₄ и N₂ при давлении 10 гПа в области $\bar{\nu} = 3028.8 \text{ см}^{-1}$ и серия линий пропускания в интервале $\bar{v} = 2950 - 3150 \,\mathrm{cm}^{-1}$ $(\lambda \approx 3.4 - 3.15$ мкм) по данным атласа HITRAN (длина оптического пути 10 см). Как видно, расстояние между линиями поглощения сравнимо с интервалом токовой перестройки, получаемой в лазерах с короткими резонаторами. Мы не делаем каких-либо выводов из сравнения форм измеренных нами линий и данных HITRAN, поскольку в экспериментах использовался генератор импульсов с большим уровнем шумов, что, как известно, приводит к уширению лазерной линии, но отмечаем хорошее разрешение, полученное в наших опытах.

4. Заключение

Таким образом, легирование гадолинием растворарасплава позволило создать одномодовые мезаполосковые лазеры на основе ДГС InGaAsSb/InAsSbP ($\lambda = 3.0-3.3$ мкм) с рекордно низкими значениями пороговых токов менее 10 мА, выходной мощностью до 0.43 мВт с грани в одну спектральную моду (*cw*, 77 K). Изготовление лазеров с короткими резонаторами (L < 150 мкм) позволило получить одномодовый режим генерации до значений токов $I \leq 6I_{th}$ при коэффициенте подавления неосновной моды ~ 650, рекордно высокой скорости токовой перестройки $210 \text{ см}^{-1}/\text{A}$ и диапазоне перестройки одной моды более 10 см^{-1} .

Работа поддержана МНТП Министерства науки Российской Федерации "Оптика. Лазерная физика", проект N_{2} 4.14, Nato expert visit stipendium PST.EV. 975482 и European Office of Aerospace Research and Development, Air Force Office of Scientific Research, Air Force Lab under SPC-994016 Contract#F61775-99-WE016.

Список литературы

- M. Aydaraliev, N.V. Zotova, S.A. Karandashev, B.A. Matveev, N.M. Stus', G.N. Talalakin. Semicond. Sci. Technol., 8, 1575 (1993).
- [2] H.K. Choi, G.W. Turner, Z.L. Liau. Appl. Phys. Lett., 65 (18), 2251 (1994).
- [3] A. Rybaltowski, Y. Xiao, D. Wu, B. Lane, H. Yi, H. Fend, J. Diaz, M. Razeghi. Appl. Phys. Lett., **71** (17), 2430 (1997).
- [4] A.N. Baranov, A.N. Imenkov, V.V. Sherstnev, Y.P. Yakovlev. Appl. Phys. Lett., 64 (19), 2480 (1994).

885

- [5] А.А. Попов, В.В. Шерстнев, Ю.П. Яковлев. ФТП, 32 (9), 1139 (1998).
- [6] Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. Письма ЖТФ, 23 (1), 72 (1997).
- [7] М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. ФТП, 33 (2), 233 (1999).
- [8] М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. ФТП, 33 (6), 759 (1999).
- [9] М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин, Т. Beyer, R. Brunner. ФТП, **34** (4), 124 (2000).
- [10] Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. ФТП, 33 (8), 1010 (1999).
- [11] A. Krier, H.H. Gao, V.V. Sherstnev. Abstracts Third Int. Conf. on Midinfrared Optoelectronics. Materials and Devices (MIOMD III) (Aaahen, 1999) p. O 20.
- [12] W.W. Bewley, H. Lee, I. Vurgaftman, R.J. Menna, C.L. Felix, R.U. Martinelli, D.W. Stokes, D.Z. Garbuzov, J.R. Meyer, M. Maiorov, J.C. Connolly, A.R. Sugg, G.H. Olsen. Appl. Phys. Lett., **76** (3), 256 (1999).
- [13] У. Тсанг. Полупроводниковые инжекционные лазеры (М., Радио и связь, 1990).
- [14] U.P. Schiesl, H.E. Wagner. Proc. 5th Int. Symp. on Gas Analysis by Tunable Diode Lasers [VDI Berichte, 1366, 251 (1998)].

Редактор Л.В. Шаронова

InGaAsSb(Gd) / InAsSbP double heterostructure lasers $\lambda = 3.0-3.3 \,\mu$ m for diode laser spectroscopy

M. Aydaraliev, T. Beyer*, N.V. Zotova, S.A. Karandashev, B.A. Matveev, M.A. Remennyi, N.M. Stus', G.N. Talalakin

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia * Fraunhofer Institute of Physical Measurement Techniques, 79110 Freiburg, Germany

Abstract We report on threshold currents, differential quantum eddiciency, emission mode chart, current tuning rate and power of the stripe diode lasers with cavity lengths $70-150 \,\mu\text{m}$ and based on InGaAsSb(Gd)/InAsSbP ($\lambda = 3.0-3.3 \,\mu\text{m}$) double heterostructures operating in the $50-107 \,\text{K}$ temperature range. A total optical output power of 0.5 mW/facet, single mode power of 0.43 mW/facet and threshold current (I_{th}) less than 10 mA are observed at 77 K at a *cw* operation. Single mode emission is measured up to $6I_{\text{th}}$ with a spectral purity as high as 650:1, tuning rate and range of 210 cm⁻¹/A and 10 cm⁻¹, respectively. Methane gas detection at 3028.75 cm⁻¹ is demonstrated.