Исследование влияния варизонности эпитаксиальных слоев на эффективность работы фотодиодов на основе твердых растворов Cd_xHg_{1-x}Te

© В.В. Васильев, Д.Г. Есаев, А.Ф. Кравченко, В.М. Осадчий, А.О. Сусляков

Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

(Получена 10 января 2000 г. Принята к печати 24 января 2000 г.)

Проведены расчеты в рамках одномерной диффузионно-дрейфовой модели характеристик фотодиодов на основе твердых растворов Cd_xHg_{1-x} с варизонными слоями. Показано, что параметры диодов можно улучшить, если *p*-*n*-переход помещать не в центральную гомогенную часть структуры, а в проповерхностную варизонную область. Установлено, что диоды с *n*-слоем, прилежащим к подложке, имеют преимущество перед диодами с *p*-слоем у подложки при освещении со стороны подложки.

Уменьшения роли поверхностной рекомбинации в работе фотодиодов и фоторезисторов на основе твердых растворов Cd_xHg_{1-x} Те можно достичь выращиванием у внешних границ варизонных слоев, в которых ширина запрещенной зоны возрастает к внешним границам [1,2]. Имеются теоретические [3] и экспериментальные [4] данные, указывающие на то, что фоточувствительность диодов изменяется, если *p*-*n*-переход попадает в варизонную область. Очевидно, что сопротивление диода при этом также изменится. В данной работе мы проводим систематическое исследование численными методами влияния на характеристики фотодиодов положения *p*-*n*-переход относительно варизонных слоев.

Основной характеристикой фотодиода является величина обнаружительной способности $D^* = R_{\lambda} \times \sqrt{A\Delta f}/\sqrt{I_n^2}$, где A — площадь фотодиода, Δf — площась фотодиода, Δf — площась фотодиода, Δf — полоса частот, I_n — шумовой ток, $R_{\lambda} = \eta q \lambda / hc$ — ватт-амперная чувствительность на длине волны λ , η — квантовая эффективность, q — заряд электрона, h — постоянная Планка, c — скорость света. Работа прибора характеризуется также произведением дифференциального сопротивления при нулевом смещении на площадь диода $R_0A = A \left(\frac{dI}{dV}\right)_{V=0}^{-1}$. Далее, R_0A будем называть для краткости просто сопротивлением диода. Его величина важна для сопряжения со считывающим устройством, и чем она больше, тем лучше.

В работе проведены расчеты характеристик фотодиодов при температуре T = 77 К в одномерной диффузионно-дрейфовой модели, включающей уравнение Пуассона и уравнения непрерывности для электронов и дырок, учитывающие рекомбинацию и фотогенерацию носителей заряда и встроенное поле, образующееся из-за зависимости параметров зонной структуры от координаты [5]. Учтены механизмы рекомбинации: Оже, Шокли–Рида и излучательная, как в работе [6]. Параметры материала взяты из работы [6], поглощение света учтено согласно работе [7]. Исходная система дифференциальных уравнений аппроксимируется конечноразностной и решается численно. Выходными параметрами этой системы являются распределения потенциала электрического поля и концентраций носителей заряда, а из них определяются величины токов. Величины R_{λ} и R_0A вычисляются по вышеприведенным выражениям, квантовая эффективность $\eta = I_p/q\Phi$, где Φ — плотность потока фотонов, I_p — фототок при нулевом смещении на диоде. Обнаружительная способность D^* рассчитывается с учетом только тепловых шумов $I_n^2 = \frac{4k_0T}{R_0}\Delta f$, где k_0 — постоянная Больцмана.

Рассматриваются фотодиоды с профилями содержания кадмия по толщине структуры, близкими к реальным [1]. На рис. 1 приведены эти профили для содержания кадмия в гомогенной части x_{Cd}^b , равного 0.22 и 0.3. Положение p-n-перехода изменяется от середины диода (z = 5 мкм) до поверхности (на рис. 1 справа). Уровни легирования соответствуют реальной ситуации [1]: слой, прилежащий к буферу (на рис. 1 слева), имеет p-тип проводимости

Рис. 1. Профили содержания кадмия в моделируемых структурах для $x_{Cd}^b = 0.22$ (*I*) и $x_{Cd}^b = 0.3$ (*2*).

Рис. 2. Профили краев зоны проводимости (1) и валентной (2) в диоде "*n* на *p*" при расположении *p*-*n*-перехода посредине структуры. $x_{Cd}^b = 0.22$, нулевое смещение. Энергия отсчитывается от уровня Ферми.

и легирование 10^{16} cm⁻³, у поверхности слой *n*-типа с легированием 10^{17} см⁻³ — назовем эту структуру типа "*n* на *p*". *p*-*n*-переход считается резким, что является хорошим приближением для полученного ионной имплантацией. Зонная диаграмма фотодиодной структуры с *p*-*n*-переходом, расположенным посредине гомогенной области с $x_{Cd}^b = 0.22$, при нулевом приложенном напряжении представлена на рис. 2. Структура освещается со стороны подложки.

Результаты расчета зависимостей R_{λ} и R_0A от положения *p*-*n*-перехода при различном содержании кадмия представлены на рис. 3 и 4 сплошными линиями. Величины R_{λ} приведены для длин волн, соответствующих максимуму R_{λ} при расположении p-n-перехода посредине диода, — положение этого максимума слабо изменяется при смещении *p*-*n*-перехода. Видно, что независимо от содержания кадмия резкое падение амперваттной чувствительности R_{λ} начинается при одной и той же глубине расположения p-n-перехода, примерно на расстоянии одного микрона от поверхности. Независимо от положения *p*-*n*-перехода ампер-ваттная чувствительность падает, а дифференциальное сопротивление R₀A возрастает с ростом x^b_{Cd} в гомогенной части. Слабое изменение ампер-ваттной чувствительности R_{λ} при смещении *p*-*n*-перехода в гомогенной части структуры, по-видимому, связано с тем, что длины диффузии электронов (≈ 35 мкм) и дырок (≈ 12 мкм) соизмеримы с толщиной фотодиода, и распределение по толщине структуры неравновесных носителей заряда, генерируемых светом, обусловлено не диффузией, а функцией фотогенерации.

Увеличение R_0A с ростом x_{Cd}^b при формировании *p*-*n*-перехода в гомогенной части фотодиода связано, очевидно, с увеличением сопротивления квазинейтральной области. Что касается существенно более слабого уменьшения ампер-ваттной чувствительности с ростом x_{Cd}^b при расположении *p*-*n*-перехода в гомогенной обла-

Рис. 3. Зависимость ампер-ваттной чувствительности диода R_{λ} от положения p-n-перехода: $1 - x_{Cd}^{b} = 0.22$, $\lambda = 8$ мкм; $2 - x_{Cd}^{b} = 0.25$, $\lambda = 6$ мкм; $3 - x_{Cd}^{b} = 0.3$, $\lambda = 4$ мкм. Сплошные линии — диод "n на p", штриховые — "p на n".

Рис. 4. Зависимость дифференциального сопротивления диода R_0A от положения p-n-перехода: $I - x_{Cd}^b = 0.22$, $2 - x_{Cd}^b = 0.25$, $3 - x_{Cd}^b = 0.3$. Сплошные линии — диод "*n* на *p*", пунктир — "*p* на *n*".

Физика и техника полупроводников, 2000, том 34, вып. 7

Рис. 5. Зависимость обнаружительной способности диода D^* от положения p-n-перехода: $1 - x_{Cd}^b = 0.22$, $2 - x_{Cd}^b = 0.25$, $3 - x_{Cd}^b = 0.3$. Сплошные линии — диод "*n* на *p*", пунктир — "*p* на *n*".

сти, то оно обусловлено уменьшением только длины волны, при которой вычисляется R_{λ} , так как независимо от x_{Cd}^b вблизи максимума чувствительности квантовая эффективность η близка к 1 в довольно широкой области длин волн.

При смещении p-n-перехода к поверхности структуры в области варизонности R_0A резко увеличивается, при этом рост дифференциального сопротивления происходит несколько раньше, чем падение ампер-ваттной чувствительности. Резкое возрастание R_0A при смещении p-n-перехода к поверхности вполне естественно из-за увеличения ширины запрещенной зоны; падение же ампер-ваттной чувствительности в области варизонности вблизи поверхности вызвано ростом барьера для носителей, величина которого определяется как профилем состава, так и профилем легирования [3,4].

В результате этих изменений R_0A и R_λ на зависимости обнаружительной способности D* от координаты *p*-*n*-перехода наблюдается максимум при расположении *p*-*n*-перехода на глубине 07-0.8 мкм от поверхности На фоне общего роста обнаружительной (рис. 5). способности D^* с увеличением x^b_{Cd} величина максимума в области варизонности возрастает сильнее, превышая *D*^{*} при расположении *p*-*n*-перехода в гомогенной части структуры при $x_{Cd}^b = 0.3$ примерно в 3.5 раза. Интересно отметить, что наблюдается значительное увеличение R₀A с перемещением *p*-*n*-перехода в варизонную область при относительно слабом уменьшении D*. Так, для $x_{\rm Cd}^b = 0.22$ при глубине p-n-перехода 0.4 мкм от поверхности R₀A возрастает в 30 раз по сравнению с *p*-*n*-переходом, расположенным посредине структуры,

а D^* уменьшается при этом в 5.5 раз. Этот эффект выражен еще лучше при увеличении содержания кадмия. Так, в структуре с $x_{Cd}^b = 0.25$ при глубине p-n-перехода 0.4 мкм R_0A растет в 110 раз по сравнению с p-n-переходом, расположенным посредине структуры, а D^* падает при этом всего в 2.5 раза.

Были рассчитаны аналогичные характеристики фотодиода, практически пока не реализованного, у которого вблизи подложки расположен слой *п*-типа проводимости с уровнем легирования 10¹⁵ см⁻³, а на поверхности структуры — *p*-слой с уровнем легирования 10¹⁶ см⁻³ (рис. 3-5, штриховые линии). В этих фотодиодных структурах ("p на n") наблюдаются аналогичные зависимости, что и в структурах "n на p", хотя имеются и некоторые особенности. В структурах "р на n" в отличие от структур "*n* на *p*" величина R_0A при смещении *p*-*n*-перехода к поверхности в области варизонности изменяется существенно меньше, а, кроме того, при $x_{Cd}^b = 0.22$ медленный рост R₀A начинается уже в области гомогенного слоя фотодиода. Ампер-ваттная чувствительность в структурах "*p* на *n*" для всех значений x_{Cd}^b при смещении *p*-*n*-перехода к поверхности монотонно уменьшается, резко падая, как и в структурах "n на p", в области варизонности. Наконец, обнаружительная способность диода "p на n" при $x_{Cd}^b = 0.22$ монотонно растет при смещении *p*-*n*-перехода к поверхности и в области варизонности достигает четко выраженного максимума. Падение величины D* после прохождения максимума на структурах "р на n" значительно слабее, чем в структурах "*n* на *p*". Хотелось бы подчеркнуть, что величина D^* структур "p на n" заметно превосходит D^* в структурах "n на p".

Таким образом, проведенные численные расчеты показывают, что в фотодиодах на основе твердых растворов Cd_xHg_{1-x} Те с варизонными слоями возможно улучшение характеристик, если *p*-*n*-переход помещать в варизонную область. Фотодиод с *p*-слоем на *n*-слое имеет преимущество перед диодом *n* на *p*-слое.

Список литературы

- V.N. Ovsyuk, A.O. Suslyakov, T.I. Zakharyash, S.A. Studenikin, V.V. Vasilyev, Yu.G. Sidorov, S.A. Dvoretsky, V.S. Varavin, N.N. Mikhailov, V.I. Liberman. Proc. SPIE, 2746, 277 (1996).
- [2] В.М. Осадчий, А.О. Сусляков, В.В. Васильев, В.А. Дворецкий. ФТП, 33, 293 (1999).
- [3] K. Kosai, W.A. Radford. J. Vacuum Sci. Technol. A, 8, 1254 (1990).
- [4] P.R. Bratt. J. Vacuum Sci. Technol. A, 1, 1687 (1983).
- [5] K.M. van Vliet, A.H. Marshak. Sol. St. Electron., 23, 49 (1980).
- [6] A. Rogalski, J. Piotrowski. Prog. Quant. Electron., 12, 87 (1988).
- [7] W.W. Anderson. Infr. Phys., 20, 363 (1980).

Редактор В.В. Чалдышев

Research of the influence of graded-band-gap epilayers on the performance of $Cd_xHg_{1-x}Te$ photodiodes

V.V. Vasilyev, D.G. Esaev, A.F. Kravchenko, V.M. Osadchii, A.O. Suslyakov

Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia

Abstract The accounts of Cd_xHg_{1-x} Te photodiodes with gradedband-gap layers within the framework of one-dimensional diffusiondrift model has been carried out. It is shown that parameters of photodiodes have been improved, if the p-n-junction is placed not in a central homogeneous part of structure, but in a graded-bandgap sub surface area. The photodiodes with a *n*-epilayer placed not far from substrate have an advantage over diodes with a *p*-layer at a substrate, illumination being directed from substrate side.