Краевое поле высоковольтных планарных *p*-*i*-*n*-диодов с неоднородно легированным охранным кольцом

© А.С. Кюрегян

Всероссийский электротехнический институт им. В.И. Ленина, 111250 Москва, Россия

(Получена 15 октября 1999 г. Принята к печати 18 января 2000 г.)

Получено точное аналитическое решение задачи о распределении электрического поля в плоском конденсаторе с бесконечно длинной щелью, тонкими электродами и неоднородным поверхностным зарядом на границе диэлектрика, заполняющего конденсатор. Такой конденсатор является хорошей моделью p-i-n-диода с мелкими планарными переходами, стоп-кольцом и слабо легированным охранным кольцом. Показано, что охранное кольцо с изменяющейся вдоль границы раздела полупроводник-вакуум поверхностной плотностью заряда Q_s в принципе позволяет уменьшить максимальное значение краевого поля до объемного значения E_0 . Для этого необходимо, чтобы: а) ширина охранного кольца была по крайней мере в 3 раза больше толщины обедненной области d; b) величина Q_s была равна $-E_0\varepsilon_0(\varepsilon + 1/2)$ во внутренней области охранного кольца и плавно увеличивалась до $E_0\varepsilon_0(\varepsilon + 3/2)$ (при наличии стоп кольца) или до 0 (при его отсутствии) в полосе шириной не менее d, расположенной на внешней границе охранного кольца. Результаты расчетов применимы также для оптимизации профиля легирования диодов, изготовленных по технологии "кремний-на-изоляторе".

1. Введение

Проблема минимизации краевого электрического поля мелких высоковольтных планарных *p*-*n*-переходов приобрела особую актуальность в последнее 10-15 лет в связи с тем, что они являются основой всех известных типов наиболее перспективных мощных приборов (MOSFET, IGBT, SIT, MCT и др.) [1]. В большинстве случаев до сих пор она решается путем создания нескольких (обычно от двух до семи) делительных колец на периферии прибора. Такая конфигурация периферии, предложенная более 30 лет назад [2], обладает несомненными технологическими достоинствами,¹ но и по крайней мере двумя принципиальными недостатками. Во-первых, вследствие сильного легирования колец напряженность поля Е резко возрастает вблизи их выхода на поверхность по сравнению со средним уровнем и как минимум на 10-20% превосходит максимальное значение Е0 в центральной (плоской) области прибора (см., например, [3]). Во-вторых, наличие большого количества делительных колец резко уменьшает активную площадь прибора при заданном размере чипа, особенно в случае высоковольтных приборов не слишком большой мощности. Наиболее перспективное альтернативное решение, предложенное почти одновременно рядом авторов в середине 80-х годов [4–10], состоит в том, чтобы заменить изолированные от основного перехода и друг от друга сильно легированные делительные кольца одним слабо легированным охранным кольцом, соприкасающимся с основным переходом (рис. 1, a). Численные расчеты двумерного распределения поля в таких структурах показали [3–12], что эффективность охранного кольца существенно зависит от его глубины, ширины и кон-

¹ Для ее реализации не требуется ни одной дополнительной операции по сравнению с простым планарным переходом; достаточно лишь изменить соответствующий фотошаблон. центрации примесей. Однако, как это обычно и бывает, проведение даже весьма обширного набора разнородных и не связанных друг с другом численных расчетов до сих пор не позволило сформулировать общие количественные требования к оптимальным параметрам колец и убедительно доказать их эффективность для защиты обширного класса приборов. Эти задачи могут быть решены только с помощью аналитической теории, отсутствующей до настоящего времени. Разумеется такая двумерная теория может быть построена только для предельно простой модели. Например, если пренебречь легированием базы диода и считать толщину всех диффузионных слоев и защитного диэлектрика бесконечно малыми, то задача сводится к вычислению напряженности поля в плоском конденсаторе с бесконечно длинной² щелью, заполненном диэлектриком. Такой конденсатор схематически изображен на рис. 1, b. Заряд легирующих примесей охранного кольца вырождается при этом в поверхностный заряд на границе раздела полупроводниквакуум. Третий электрод конденсатора моделирует стопкольцо, формируемое иногда для отделения истощенной области от края кристалла. Предложенная модель прибора обладает кроме предельной простоты еще одной способностью: в конденсаторе с бесконечно тонкими (а значит — острыми) электродами минимизировать краевое поле гораздо сложнее, чем в любом реальном приборе с диффузионными слоями конечной толщины. Но уже коль скоро удастся решить задачу для такой экстремальной модели, то она тем более будет решенной и для реальных приборов. Именно это и является целью настоящей работы.

² Щель можно считать прямолинейной, если минимальный радиус кривизны основного перехода много больше толщины базы.

Рис. 1. Схематическое изображение поперечного сечения периферийной области планарной $p^+ - i - n^+$ -структуры со слабо легированным охранным кольцом (*a*) и модель в комплексной области z = x + iy, принятая для расчета краевого поля (*b*).

Общее решение задачи о краевом поле

Вычисление потенциала $\varphi(x, y)$ и поля E(x, y) для предложенной двумерной модели удобнее всего провести, используя хорошо известные методы теории функции комплексного переменного [13]. Пусть $\varphi_1(x, y)$ гармонически сопряженная с $\varphi(x, y)$ функция. Тогда $\mathbf{E}(z) = -d(\varphi + i\varphi_1)/dt$ — функция, аналитическая в верхней полуплоскости (т.е. над конденсатором) и в полосе -d < y < 0 (внутри конденсатора) комплексной плоскости z = x + iy (см. рис. 1, *b*). Поскольку электроды конденсатора являются эквипотенциалями,

Re
$$\mathbf{E}(z) = 0$$

при $z = x < 0$, $z = x > L$ и $z = x - id$. (1)

На границе раздела полупроводник–диэлектрик выполняются обычные условия для нормального $E_n(x)$ и тангенциального $E_t(x)$ полей, поэтому при 0 < x < L должно быть

$$\operatorname{Re} \mathbf{E}(x+i0) = \operatorname{Re} \mathbf{E}(x-i0) = E_t(x), \quad (2)$$

Физика и техника полупроводников, 2000, том 34, вып. 7

$$\operatorname{Im} \mathbf{E}(x+i0) = \frac{Q_s(x)}{\varepsilon_0} + \varepsilon \operatorname{Im} \mathbf{E}(x-i0), \qquad (3)$$

где *є* — относительная диэлектрическая проницаемость полупроводника, ε_0 — диэлектрическая проницаемость вакуума, $Q_s(x) \equiv Q_0 f_q(x)$ — плотность поверхностного заряда, $Q_0 = Q_s(0), f_q(x)$ — безразмерная функция. Решения краевых задач с граничными условиями (1), (2) для внутренней и внешней областей конденсатора выражаются с помощью соответствующих интегралов Шварца для полосы и полуплоскости [13] через тангенциальное поле $E_t(x)$. Сшивая эти решения с помощью условий (2) и (3), легко получить сингулярное интегральное уравнение для $E_t(x)$. К сожалению, его регуляризация известным методом [14] приводит к уравнению Фредгольма 2-го рода с ограниченным ядром, аналитическое решение которого, вообще говоря, невозможно, а качественный анализ крайне затруднителен. Поэтому мы используем прием, позволяющий в нашем случае упростить задачу. Именно будем искать решение, предполагая, что распределение потенциала $\varphi(x, d)$ вдоль прямой y = d известно. Тогда в качестве граничного условия для полосы 0 < y < d в верхней полуплоскости на рис. 1, b, дополняющего (1), можно использовать равенство

$$\operatorname{Re} \mathbf{E}(x+id) = -E_0 f_e(x) \equiv -\frac{d\varphi(x,d)}{dx},\qquad(4)$$

где $E_0 = U/d$, U — потенциал анода и стоп-кольца относительно катода, а функция $f_e(\xi)$ имеет колоколообразный вид, предельные значения $f_e(\pm \infty) = 0$ и нормировку³

$$\int_{-\infty}^{\infty} f_e(x) dx = d.$$
 (5)

Теперь интеграл Шварца для полосы 0 < y < d принимает вид

$$\mathbf{E}(z) = -\frac{i}{2d} \left[\int_{0}^{L} E_t(x') \operatorname{cth} \left(\frac{\pi}{2} \frac{x' - z}{d} \right) dx' + E_0 \int_{-\infty}^{\infty} f_e(x') \operatorname{th} \left(\frac{\pi}{2} \frac{x' - z}{d} \right) dx' - 2dc_0 \right], \quad (6)$$

а для полосы -d < y < 0

$$\mathbf{E}(z) = -\frac{i}{2d} \left[\int_{0}^{L} E_t(x') \operatorname{cth}\left(\frac{\pi}{2} \frac{x'-z}{d}\right) dx' - 2dc_1 \right].$$
(6a)

Постоянные интегрирования c_0 и c_1 следует определять из очевидных дополнительных условий

$$\int_{-d}^{0} \text{Im} \, \mathbf{E}(-\infty + iy) dy = U, \quad \int_{0}^{d} \text{Im} \, \mathbf{E}(-\infty + iy) dy = 0.$$
(7)

³ Эти основные свойства функции $f_e(\xi)$ являются следствием того, что $\varphi(x, d)$, очевидно, монотонно изменяется от 0 при $x \to -\infty$ до U при $x \to \infty$.

Подставляя (6) и (6а) в (7), меняя порядок интегрирования и учитывая равенство

$$\int_{0}^{L} E_t(x)dx = -U,$$
(8)

можно показать, что $c_0 = 0$, $c_1 = U/2d$. Вычисляя граничные значения Im $\mathbf{E}(x \pm i0)$ на отрезке 0 < x < L с помощью (6), (6а) по формуле Сохоцкого–Племеля [13,14] и подставляя их в (3), получим после несложных преобразований формулу для нормального поля

$$E_n(x) = \frac{1}{\varepsilon + 1} \left[\frac{Q_0}{\varepsilon_0} f_q(\xi) - E_0 \Phi(\xi) \right]$$
(9)

и уравнение для тангенциального поля

$$\frac{1}{\pi} \int_{1}^{a} E_t[x(\xi')] \frac{d\xi'}{\xi' - \xi} = E_n[x(\xi)], \qquad (10)$$

где $\Phi(\xi) = \frac{1}{\pi} \int_{0}^{\infty} f_e[x(\xi')] \frac{d\xi'}{\xi'+\xi}$ и введены обозначения $\xi = \xi(x) = \exp(\pi \frac{x}{d}), a = \xi(L)$. Ограниченное решение уравнения (10), как известно [14], имеет вид

$$E_{t}[x(\xi)] = -\frac{\sqrt{(\xi - 1)(a - \xi)}}{\pi} \times \int_{1}^{a} \frac{E_{n}[x(\xi')]}{\sqrt{(\xi' - 1)(a - \xi')}} \frac{d\xi'}{\xi' - \xi}$$
(11)

и существует только при

$$\int_{1}^{a} \frac{E_n[x(\xi)]d\xi}{\sqrt{(\xi-1)(a-\xi)}} = 0.$$
 (12)

Кроме того, должно быть выполнено равенство (8), подставляя в которое выражение (11) для $E_t(\xi)$, получим дополнительное условие

$$\frac{\sqrt{a}}{\pi} \int_{1}^{a} \frac{E_n[x(\xi)]}{\sqrt{(\xi-1)(a-\xi)}} \frac{d\xi}{\xi} = -E_0.$$
(13)

Наконец, подстановка (9) в (11)–(13) дает после замены порядка интегрирования соответственно

$$E_{t}(x) = \frac{E_{0}}{\varepsilon + 1} \sqrt{\frac{(\xi - 1)(a - \xi)}{a}} \\ \times \left[\frac{\varepsilon + F_{e}^{1}(0)}{F_{q}^{1}(0)} F_{q}^{1}(\xi) - F_{e}^{1}(\xi) \right], \quad (14)$$

$$F_e^0 F_q^1(0) = -F_q^0[\varepsilon + F_e^1(0)],$$
(15)

$$\frac{Q_0}{\varepsilon_0} = -E_0 \frac{\varepsilon + F_e^1(0)}{F_q^1(0)},$$
(16)

где

$$F_q^n(\xi) = \frac{1}{\pi} \int_{1}^{a} \left(\frac{\sqrt{a}}{(\xi' - \xi)}\right)^n \frac{f_q[x(\xi')]d\xi'}{\sqrt{(\xi' - 1)(a - \xi')}},$$
 (17)

$$F_e^n(\xi) = \frac{1}{\pi} \int_0^\infty \left(\frac{\sqrt{a}}{\xi' + \xi}\right)^n \frac{f_e[x(\xi')]d\xi'}{\sqrt{(\xi + 1)(a + \xi')}}.$$
 (18)

Формулы, описывающие распределение поверхностного поля в p-i-n-структуре без стоп-кольца, проще всего вывести, совершая предельный переход $a \to \infty$ в (14) и (17). Учитывая при этом, что функции $f_q(\xi)$ и $f_e(\xi)$ стремятся к нулю с ростом ξ , получим

$$E_t(x) = E_0 \frac{\sqrt{\xi - 1}}{\varepsilon + 1} \left[\frac{\varepsilon + F_e^{1}(0)}{F_q^{1}(0)} F_q^{1}(\xi) - F_e^{1}(\xi) \right], \quad (14a)$$

$$F_q^1(\xi) = \frac{1}{\pi} \int_{1}^{\infty} \frac{f_q[x(\xi')]}{\sqrt{\xi' - 1}} \frac{d\xi'}{\xi' - \xi},$$
 (17a)

$$F_e^1(\xi) = \frac{1}{\pi} \int_0^\infty \frac{f_e[x(\xi')]}{\sqrt{\xi'+1}} \frac{d\xi'}{\xi'+\xi}.$$
 (18a)

Кроме того, из (17), (18) следует, что $\lim_{a\to\infty} F_q^0 = \lim_{a\to\infty} F_e^0$ = 0, поэтому условие (15) существования ограниченного решения $E_t(x)$ в p-i-n-структуре без стоп-кольца выполняется автоматически при любом распределении заряда $Q_s(x)$, удовлетворяющем условию (16).

Строго говоря, проделанные преобразования не привели нас к решению задачи, так как правые части формул (9), (14)–(16) содержат неизвестную функцию $f_e(x)$. В принципе ее можно исключить, выразив с помощью интеграла Пуассона через тангенциальное поле $E_t(x)$ (см. Приложение). Однако тогда вместо выражения (14) получается интегральное уравнение Фредгольма для $E_t(x)$, которое опять же не имеет аналитического решения, хотя уже и не является сингулярным. Тем не менее использованный выше метод регуляризации обладает в нашем случае одним важным преимуществом по сравнению с известным методом [14]. Именно, все слагаемые в (9), (14)–(16), не содержащие $f_e(x)$, имеют, а содержащие — не имеют в своем составе большой множитель ε , кроме того, справедливы неравенства $\Phi(\xi)$ < 1; F_e^0 < 1; $F_e^1(\xi)$ < $F_e^1(0)$ < 1. Поэтому подстановка вместо $f_e(x)$ любой колоколообразной функции с правильными предельными значениями и нормировкой (5) даст ошибку во всяком случае не более $1/\varepsilon$. Другими словами, условия на внешней границе y = d слабо влияют на распределение потенциала и на поверхностное поле внутри полупроводника. Причина этого состоит в том, что внешние по отношению к полупроводнику воздействия "экранируются" вследствие сильной поляризуемости кристалла. В дальнейшем мы будем использовать простейшую аппроксимацию вида

$$f_e(x) = \begin{cases} \frac{\pi}{2\ln\Lambda} & \text{при } \Lambda^{-1} < \xi < \Lambda, \\ 0 & \text{при } \xi < \Lambda^{-1} \text{ и } \xi > \Lambda, \end{cases}$$
(19)

полагая $\Lambda \gg a$ при наличии стоп-кольца и $1 \ll \Lambda \ll a$ при его отсутствии. Вычисление соответствующих интегралов приводит в пределе $\Lambda \to \infty$ к следующим простым выражениям:

$$F_e^1(\xi) = 0$$
 при $1 < \xi < a,$ (20)

$$F_e^1(0) = \Phi(\xi) = 1/2, \tag{21}$$

$$F_e^0 = \begin{cases} 1/2 & \text{при конечных } a \text{ (есть стоп-кольцо),} \\ 0 & \text{при } a \gg \Lambda \text{ (нет стоп-кольца).} \end{cases}$$
(22)

Эта аппроксимация соответствует использованию граничного условия $\varphi(x, d) = U/2$ и, как показано в *Приложении*, приводит к ошибке не более $1/2\varepsilon$. С такой же погрешностью справедливы все результаты следующего раздела.

3. Минимизация краевого поля

Дальнейшие расчеты можно проводить лишь после конкретизации вида функции $f_q(x)$. При этом надо иметь в виду основную цель создания охранного кольца — минимизацию напряженности поля на границе раздела

$$E_s(x) = \sqrt{E_n^2(x) + E_t^2(x)},$$
 (23)

необходимую для обеспечения максимально возможного напряжения пробоя прибора.

Оказалось, что при наличии стоп-кольца эта цепь может быть достигнута, если, в частности использовать функцию

$$f_q(x) = \frac{1 - \gamma \left(\frac{\xi - 1}{a - \xi}\right)^m}{1 + \left(\frac{\xi - 1}{a - \xi}\right)^m}$$
(24)

с параметрами m и γ , связанными между собой уравнением (15). Графики функции (24) для различных значений параметров приведены на рис. 2, a. Если m целое число, то интегралы в (18) вычисляются обычным образом с помощью теории вычетов [13], применение которой дает

$$F_q^0 = \frac{1-\gamma}{2},\tag{25}$$

$$F_q^1(0) = 1 - (\gamma + 1) \left[\frac{1}{(-a)^m + 1} + \Psi_m(a, 0) \right], \quad (26)$$

$$F_q^1(\xi) = -(\gamma + 1)\sqrt{rac{a}{a-\xi}}\Psi_m(a-\xi;\xi),$$
при $1 < \xi < a,$ (27)

Физика и техника полупроводников, 2000, том 34, вып. 7

Рис. 2. Распределения поверхностной плотности заряда, использованные при расчете краевого поля в планарных $p^+ - i - n^+$ -структурах со стоп-кольцом (*a*) и без стоп-кольца (*b*, *c*).

где

872

$$\Psi_m(x, y) = \frac{x + y - 1}{m} \sqrt{\frac{x}{2}} \sum_{k=1}^m \frac{\sqrt{1 - \cos \theta_k}}{x^2 - 2x(y - 1)\cos \theta_k + (y - 1)^2}$$
$$\theta_k = \pi \frac{2k - 1}{m}.$$

Подставляя (22) и (23) в (15) и решая получившееся уравнение относительно γ , получим

$$\gamma = \frac{\frac{\varepsilon + F_e^1(0)}{2F_e^0} + 1 - \frac{1}{1 + (-a)^m} - \Psi_m(a; 0)}{\frac{\varepsilon + F_e^1(0)}{2F_e^0} + \frac{1}{1 + (-a)^m} + \Psi_m(a; 0)}.$$
 (28)

Графики зависимостей $E_s(x)$, $E_t(x)$ и $E_n(x)$, построенные с помощью этих формул для некоторых значений параметров, приведены на рис. 3. Как видно, нормальное поле $E_n(x)$ максимально на концах отрезка 0 < x < L, где тангенциальное поле $E_t = 0$. По мере удаления от концов отрезка $E_n(x)$ уменьшается, а $E_t(x)$ увеличивается. При m = 1 реалиуется уникальная ситуация: изменения величин $E_n(x)$ и $E_t(x)$ точно компенсируют друг друга, так что напряженность поля на границе раздела $E_s(x)$ не зависит от координаты и равно

$$E_s(x) = E_0 \operatorname{cth} \frac{\pi L}{4d}.$$
 (29)

В этом частном случае распределение поверхностного заряда $Q_s(x)$ имеет вид

$$Q_s(x) = Q_0 \left[1 - (1+\gamma) \frac{\xi(x) - 1}{a - 1} \right],$$
 (30)

а параметры Q_0 и γ равны

$$Q_0 = -E_0\varepsilon_0(\varepsilon+1)\operatorname{cth}\frac{\pi L}{4d},\qquad(31)$$

$$\gamma = \frac{2(\varepsilon+1) + \operatorname{th} \frac{\pi L}{4d}}{2(\varepsilon+1) - \operatorname{th} \frac{\pi L}{4d}}.$$
(32)

Краевое поле (29) значительно больше объемного значения E_0 при малых L/d и практически не отличается от E_0 при L/d > 3.

Если $m \ge 2$, то "поверхностный" p-n-переход является более "резким" и по мере удаления от концов отрезка 0 < x < L поле $E_t(x)$ увеличивается быстрее, чем $E_n(x)$ уменьшается. При произвольных *m* максимум $E_t(x)$ расположен в точке

$$x = x_0 \equiv \frac{d}{\pi} \ln \frac{a+1}{2},$$

а поверхностный *p*-*n*-переход — в точке

$$x = x_s \equiv \frac{d}{\pi} \ln \frac{a + \gamma^{1/m}}{1 + \gamma^{1/m}},$$

где $|E_n(x_s)| = \frac{1}{2} \frac{E_0}{\varepsilon+1} \ll |E_t(x_0)|$. Так как $(\gamma - 1) \approx 1/\varepsilon \ll 1$, то $x_0 \approx x_s$, поэтому

$$E_{sm} = \max E_s(x) \approx |E_t(x_0)| \\ = \frac{E_0}{\varepsilon + 1} \frac{2\varepsilon + 1}{2F_q^1(0)} \frac{1 + \gamma}{2} \sum_{i=1}^m (m \sin \theta_k/2)^{-1}.$$
 (33)

Рис. 3. Результаты расчета краевых полей в планарных $p^+ - i - n^+$ -структурах со стоп-кольцом. a — зависимости $E_n(x)$ (точки), $E_t(x)$ (пунктир) и $E_s(x)$ (сплошная линия) от координаты при m = 1 и L/d = 2; b — зависимость отношения E_{sm}/E_0 от величины L/d при m = 1; c — зависимости отношения $E_s(x)/E_0$ от координаты при L/d = 2 и различных значениях параметра m.

Физика и техника полупроводников, 2000, том 34, вып. 7

Сумма в правой части (33) очень точно аппроксимируется функцией $(1 + 0.62 \ln m)$, которая и определяет главным образом зависимость E_{sm} от степени резкости поверхностного p-n-перехода. Легко убедиться, что уже при m = 2 максимальное значение краевого поля почти в 1.5 раза больше E_0 , даже если L/d > 3.

Ясно, что не только увеличение параметра m, но и использование любого распределения поверхностного заряда $Q_s(x)$, отличного от (30), приведет к тому, что поле $E_s(x)$ станет неоднородным и, следовательно, увеличится по сравнению со значением, даваемым формулой (29). Это означает, что мы нашли решение поставленной задачи: при заданном расстоянии между основным электродом и стоп-кольцом краевое поле минимально, если распределение поверхностного заряда $Q_s(x)$ описывается формулой (30).

Если стоп-кольцо отсутствует, то краевое поле можно минимизировать, например используя аппроксимацию

$$f_q(x) = \frac{1}{1 + \left(\frac{\xi - 1}{\lambda - 1}\right)^m},\tag{34}$$

где $\lambda = \xi(l), l$ — ширина полосы, в которой сосредоточена большая часть поверхностного заряда (см. рис. 2, *b*). Подстановка (34) в (18) дает в этом случае при целых *m*

$$F_q^1(0) = 1 - rac{1}{(1-\lambda)^m + 1} - \Psi_m(\lambda - 1; 0),$$
 (35)

$$F_q^1(\xi) = -\Psi_m(\lambda - 1; \xi),$$
 при $1 < \xi.$ (36)

Результаты расчетов краевого поля с использованием этих формул приведены на рис. 4. Как видно, нормальное поле $E_n(x)$ почти постоянно при 0 < x < l - d, уменьшается примерно в 2 раза при x = l, а затем быстро стремится к величине $\frac{1}{2} \frac{E_0}{\varepsilon+1}$.⁴ Тангенциальное поле $E_t(x)$, напротив, максимально по модулю при x = l, причем величина $|E_t(l)|$ также определяется формулой (33) со значением $\gamma = 0$. Как и при наличии стоп-кольца, $|E_t(x)|$ увеличивается с ростом x быстрее, чем уменьшается $|E_n(x)|$, если $m \ge 2$. Однако теперь абсолютный максимум $E_s(x)$ превосходит $E_s(0)$ лишь на несколько процентов при m = 2. Поэтому распределение поверхностного заряда вида (34) можно использовать без заметного увеличения тах $E_s(x)$ при значениях $m \le 2$.

Чтобы понять, насколько сильно влияют детали распределения поверхностного заряда на краевое поле, мы провели расчеты еще для двух случаев. При использовании функции вида

$$f_q(x) = \begin{cases} 1 - \left(\frac{\xi - 1}{\lambda - 1}\right)^m & \text{при } x < l, \\ 0 & \text{при } x \ge l \end{cases}$$
(37)

Рис. 4. Результаты расчета краевых полей в планарных $p^+ - i - n^+$ -структурах без стоп-кольца. a — зависимости $E_n(x)$ (точки), $E_t(x)$ (пунктир) и $E_s(x)$ (сплошная линия) от координаты при m = 2 и l/d = 2; b — зависимости отношения $E_s(x)/E_0$ от координаты при l/d = 2 и различных значениях параметра m; c — зависимости отношения $E_s(x)/E_0$ от координаты при m = 2 и различных величины l/d.

⁴ Этот результат является следствием того, что мы использовали аппроксимацию (19) для $f_e(\xi)$. На самом деле, конечно, должно быть $E_n(\infty) = 0$.

получается

$$F_q^1(0) = \frac{2}{\pi} \left\{ \left[1 - \frac{1}{(1-\lambda)^m} \right] \arctan \sqrt{\lambda - 1} + \frac{1}{\sqrt{\lambda - 1}} \sum_{k=1}^m \frac{(-1)^k (\lambda - 1)^{1-k}}{2m + 1 - 2k} \right\}.$$
 (38)

Если использовать распределение вида

$$f_q(x) = \begin{cases} \sqrt{\frac{\lambda - \xi}{\lambda - 1}} & \text{при } x < l, \\ 0 & \text{при } x \ge l \end{cases}$$
(39)

с корневой особенностью при $x \rightarrow l$, то

$$F_q^1(0) = \sqrt{\operatorname{th} \frac{\pi l}{4d}}.$$
(40)

В обоих случаях все результаты численных расчетов полей качественно полностью аналогичны приведенным на рис. 4. В частности, во всех случаях $E_{sm} = E_n(0)$, если $f_q(x)$ изменяется от 1 до $-\gamma$ (при наличии стопкольца) или до 0 (без него) в полосе шириной порядка d на внешней границе охранного кольца. Количественные же различия малы. Например, если $\sqrt{a} \gg 1$, то важный параметр $F_q^1(0)$ во всех случаях можно представить в виде $F_q^1(0) = 1 - \eta \exp\left(-\frac{\pi L}{2d}\right)$, и только постоянная η изменяется в пределах от $2/\pi$ до 2 в зависимости от деталей распределения $Q_s(x)$.

4. Обсуждение результатов

Основные результаты, полученные выше, можно сформулировать следующим образом. Во-первых, максимальная напряженность краевого поля E_{sm} всегда больше объемного значения E_0 . Во-вторых, надлежащий выбор распределения поверхностного заряда $Q_s(x)$ позволяет уменьшить разницу ($E_{sm} - E_0$) до любой заданной величины. Для этого в свою очередь необходимо выполнить два условия.

а) Плотность поверхностного заряда $Q_s(x)$ должна плавно изменяться от минимального значения Q_0 до максимального (равного $-\gamma Q_0$ при наличии стоп-кольца и нулю при его отсутствии) в полосе шириной не менее толщины *i*-слоя *d*, расположенной на внешней границе охранного кольца. При выполнении этого условия E_{sm} равно нормальному к поверхности полю на внутренней границе охранного кольца $E_n(0)$.

б) Ширина охранного кольца должна быть в несколько раз больше d. При выполнении этого условия максимальное краевое поле с точностью порядка $a^{-1/2}$ можно

представить в виде

$$E_{sm} = E_n(0) \approx E_0 \left[1 + \delta - \frac{\Phi(1)}{\varepsilon + 1} \eta \exp\left(-\frac{\pi L}{2d}\right) \right] \\ \times \left[1 - \eta \exp\left(-\frac{\pi L}{2d}\right) \right]^{-1}, \qquad (41)$$

где $\delta = [F_e^1(0) + \Phi(1) - 1]/(\varepsilon + 1)$. Уже при $L \ge 3d$ экспонента в (41) становится пренебрежимо малой и $E_{sm} = E_0(1 + \delta)$.

Если для функции $f_e(x)$ принять аппроксимацию (19), то $\delta = 0$. Более точную оценку величины δ можно получить с использованием (14) и (A1), из которых следует, что

$$\delta = \frac{d}{\pi} \frac{1}{U(\varepsilon+1)} \int_{-\infty}^{\infty} dx \int_{0}^{L} dx' \frac{\sqrt{a(\xi+1)} - \sqrt{a+\xi}}{(\xi+1)\sqrt{a+\xi}}$$
$$\times \frac{E_t(x')}{(x-x')^2 + d^2}.$$
(42)

При больших \sqrt{a} подынтегральная функция в (18) имеет острые максимумы в точках $x \approx \frac{\ln 3}{\pi} d$ и $x' \approx L - d$, поэтому относительно слабо зависящий от x и x' множитель $[(x - x')^2 - d^2]^{-1}$ можно вынести из-под знака интеграла при этих значениях аргументов. В результате получается оценка

$$\delta \approx \frac{2\ln 2}{(\varepsilon+1)\pi^2} \frac{d^2}{(L-1.35d)^2 + d^2} < 0.01 \frac{d^2}{L^2}, \quad (43)$$

откуда видно, что с достаточной для практических целей точностью можно действительно считать, что $\delta = 0$ и $E_{sm} = E_0$ при $L \ge 3d$.

Следует подчеркнуть, что для конденсатора с заданным распределением поверхностного заряда $Q_s(x)$ все результаты, полученные выше, справедливы лишь при одном значении напряжения:

$$U = U_q \equiv -d\frac{Q_0}{\varepsilon_0} \frac{F_q^1(0)}{\varepsilon + F_e^1(0)} \approx -d\frac{2Q_0}{\varepsilon_0(2\varepsilon + 1)}, \quad (44)$$

определяемым формулой (16). При всех других значениях U уравнение (11) не имеет ограниченного решения, т. е. тангенциальная компонента краевого поля стремится к бесконечности на границах электродов. Однако эта расходимость является следствием того, что мы использовали модель конденсатора с бесконечно тонкими металлическими электродами неизменной ширины. В реальном p-i-n-диоде при $U \neq U_q$ ситуация качественно иная. Именно, если $U > U_q$, то тангенциальное поле резко возрастает вблизи границ охранного кольца, хотя и остается конечным. Величина E_{sm} существенно зависит от распределения примесей в p^+ -слое и стоп-кольце (как в обычных планарных переходах [1]) и не может быть вычислена в рамках нашей модели. Впрочем, в этом и

Физика и техника полупроводников, 2000, том 34, вып. 7

нет необходимости, коль скоро U_q равно объемному напряжению пробоя U_B , больше которого смещение U быть не может. Если же $U < U_q$, то области охранного кольца, примыкающие к электродам, заполнятся носителями заряда вплоть до полной нейтрализации. Вследствие этого электроды "расширятся", а эффективная ширина кольца, обедненного носителями заряда, уменьшится до величины, обеспечивающей выполнения условия (16) существования ограниченного решения уравнения (11). При этом отношение E_{sm}/E_0 возрастет, но само краевое поле E_{sm} уменьшится по сравнению с тем, что было при $U = U_q$.

Таким образом, вычисляя величину Q_0 для "оптимального" охранного кольца по формуле (16) необходимо использовать пробивное значение объемной напряженности поля $E_0 = E_B$; в частности, при $L \ge 3d$ должно быть $Q_0 \approx -E_B \varepsilon_0 (\varepsilon + 1/2)$. Иными словами, смыкание обедненной части оптимального охранного кольца с сильно легированными p^+ - и n^+ -областями должно наступить при $U = U_B$. Выполнение этого третьего условия наряду с условиями а) и б) должно обеспечить максимально возможное напряжение поверхностного пробоя прибора, сколь угодно близкое к объемному значению U_B .

Полученные выше результаты применимы для оптимизации конструкции еще одного типа приборов высоковольтных диодов, изготовленных по технологии "кремний-на-изоляторе" (SOI). Типичное отношение толщин пленок изолятора d_i и кремния d_s достигает нескольких десятков, поэтому использованное нами приближение бесконечно тонких электродов применимо и в этом случае. Роль поверхностного заряда играет заряд ионизованных примесей в полупроводниковой пленке. Единственное различие состоит в том, что конденсатор с щелью заполнен не полупроводником, свободным от подвижных носителей заряда, а изолятором, диэлектрическая проницаемость которого обычно гораздо меньше (около 4 в случае SiO₂). Поэтому ошибка, связанная с использованием "неправильной" аппроксимации $f_e(x)$, может достигать 10%. Однако тот факт, что минимизация поля в SOI-диодах достигается при использовании профиля (30)-(32), не вызывает сомнения. Этот результат представляется особенно важным, поскольку до сих пор оптимальным считалось линейное распределение примесей вдоль поверхности [15,16].

В заключение отметим, методы создания "произвольного" профиля легирующей примеси вдоль поверхности с помощью литографии высокого высокого разрешения достаточно хорошо отработаны [5,17] и требуют лишь обеспечения точности дозы облучения при ионной имплантации на уровне нескольких процентов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 98-02-17424).

Приложение

Точное соотношение между тангенциальным полем на границе раздела $E_t(x)$ и функцией $f_e(x)$ можно получить, используя интеграл Пуассона для полуплоскости y > 0 [13]

$$f_e(x) = \frac{d}{E_0} \frac{1}{\pi} \int_0^L \frac{E_t(x')}{(x'-x)^2 + d^2} dx'.$$
(II.1)

При любой (в том числе, при правильной) зависимости $E_t(x)$ функция $f_e(x)$ имеет максимум, расположенный на отрезке 0 < y < L, и асимптотику $f_e(x) \propto x^{-2}$ при больших |x|. К сожалению, аналитическое вычисление интегралов $\Phi(\xi)$ и $F_e^1(\xi)$ с любой функцией $f_e(x)$, обладающей такой асимптотикой, невозможно. Поэтому для оценки погрешности, связанной с использованием "неправильной" аппроксимации $f_e(x)$, мы сравним два крайних предельных случая. Один из них уже рассмотрен в разд. 2 и 3 настоящей работы: функция $f_e(x)$, описываемая формулой (19), "убывает" в актуальной области значений *x* гораздо медленнее x^{-2} . Во втором случае используем функцию

$$f_e(x) = \pi \frac{a-1}{\ln a} \frac{\xi}{(a+\xi)(\xi+1)},$$
 (II.2)

имеющую максимум при x = L/2 и асимптотику $f_e(x) \propto \exp(-\pi |x|/d)$. Для нее получается

$$\Phi(\xi) = \frac{1}{\ln a} \left(\frac{a \ln a/\xi}{a-\xi} - \frac{\ln \xi}{\xi-1} \right), \quad (\Pi.3)$$

$$F_e^0 = F_e^1(0) = \frac{2}{\ln a} \frac{\sqrt{a} - 1}{\sqrt{a} + 1} = \frac{2d}{\pi L} \operatorname{th} \frac{\pi L}{4d}, \qquad (\Pi.4)$$

$$F_e^{1}(\xi) = \frac{2\sqrt{a}}{\ln a} \frac{a-1}{(\xi-1)(a-\xi)} \left[\frac{\xi}{\sqrt{(\xi-1)(a-\xi)}} \right] \times \operatorname{arctg} \frac{\sqrt{(\xi-1)(a-\xi)}}{\xi+\sqrt{a}} - \frac{\xi+\sqrt{a}}{(\sqrt{a}+1)^2} \left[\cdot \right] (\Pi.5)$$

Очевидно, точное решение должно находиться между этими двумя крайними случаями, поэтому ошибка результатов расчетов, полученная с использованием любой из аппроксимаций (19) или (П.2), не превышает разницы между ними. Численные расчеты, проведенные нами для большого числа актуальных значений параметров, показывают, что эта разница максимальна при вычислении величины Q_0 при больших *а* по формуле (16). Легко убедиться, что в пределе $a \gg 1$

$$\frac{\Delta Q_0}{Q_0} \leqslant \frac{1}{2\varepsilon} \left(1 - \frac{2d}{\pi L} \right). \tag{\Pi.6}$$

В частности, для Si при L = 3d получается $\frac{\Delta Q_0}{Q_0} \leq 0.035$. На практике такая ошибка не имеет никакого значения, так как реально достижимая точность воспроизведения концентрации легирующих примесей обычно гораздо хуже 3.5%.

Список литературы

- [1] B.J. Baliga. Modern power devices (Singapore, 1987) p. 132.
- [2] V.C. Kao, E.D. Wolley. Proc. IEEE, 55, 1409 (1967).
- [3] H. Yilmaz. IEEE Trans. Electron. Dev., ED-38, 1666 (1991).
- [4] K. Hwang, D.H. Navon. IEEE Trans. Electron. Dev., ED-31, 1126 (1984).
- [5] R. Stengl, U. Gosele. IEDM Tech. Dig., 154 (1985).
- [6] S. Ahmad, J. Akhtar. IEEE Electron. Dev. Lett., EDL-6, 465 (1985).
- [7] R. Stengl et al. IEEE Trans. Electron. Dev., ED-33, 46 (1986).
- [8] V. Boisson, M. Le Helley, J.-P. Chante. IEEE Trans. Electron. Dev., ED-33, 80 (1986).
- [9] S. Georgescu, T. Dunca, D. Sdrulla, I. Gupta. Sol. St. Electron., 29, 1035 (1986).
- [10] V.K.A. Temple, W. Tanrapourn. IEEE Trans. Electron. Dev., ED-33, 1601 (1986).
- [11] J. Akhtar, S. Ahmad. Sol. St. Electron., 33, 1459 (1990).
- [12] P. Austing, J.L. Sanches, R. Berriane. Sol. St. Electron., 39, 593 (1996).
- [13] М.А. Лаврентьев, Б.В. Шабат. Методы теории функций комплексного переменного (М., Наука, 1987).
- [14] Н.И. Мусхелишвили. Сингулярные интегральные уравнения (М., Наука, 1968) с. 511.
- [15] S. Merchant et al. Proc. 3rd Int. Symp. Power Semiconductor Devices and IC's, 1991, p. 31.
- [16] S. Merchant. IEEE Trans. Electron. Dev., ED-46, 1264 (1999).
- [17] S. Merchant. IEEE Trans. Electron. Dev., ED-42, 1264 (1995).

Редактор В.В. Чалдышев

Surface field of high-voltage planar p-i-n-diodes with nonhomogeneously doped guard ring

A.S. Kyuregyan

All-Russian Electrical Engineering Institute, 111250 Moscow, Russia

Abstract An exact analytical distribution of the electric field in a parallel-plane capacitor with an infinitely long slop and thin plates is presented. The obtained distribution accounts for the influence of the nonhomogeneous charge on the surface of a dielectric which fills up the capacitor. This type of the capacitor proves to be a good model for investigation of the p-i-n-diodes with shallow planar junctions, stop-ring and lightly-doped guard ring. It is shown that the guard ring may reduce the maximum value of the surface electric field to the volume value E_0 in case the surface charge density Q_s changes along the semiconductor surface. To achieve this end, two conditions must be met: (a) the width of the guard ring must be three times greater than the depleted region thickness d; (b) the value of Q_s must be equal to $-E_0\varepsilon_0(\varepsilon+1/2)$ in the internal region of the guard ring and then gradually rise up to the value $E_0\varepsilon_0(\varepsilon + 3/2)$ (with the stop-ring) or to 0 (in the absence of the stop-ring) within the region of the width d, adjacent to the external boundary of the guard ring. The results of accounts are applicable also for optimization of the silicon-on-insulator diode doping profiles.

876