Эффект Холла в субмонослойных системах Fe на Si (111) *n*- и *p*-типа проводимости

© Н.Г. Галкин*[¶], Д.Л. Горошко, А.В. Конченко*, Е.С. Захарова, С.Ц. Кривощапов

Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук, 690041 Владивосток, Россия

* Дальневосточный государственный технический университет,

690069 Владивосток, Россия

(Получена 7 декабря 1999 г. Принята к печати 7 февраля 2000 г.)

Методом *in situ* измерений эффекта Холла при комнатной температуре показано, что формирование атомарно-чистой поверхности кремния Si (111) 7×7 при высокотемпературном отжиге ($T = 1250^{\circ}$ C, t = 120-180 c) кремния *n*-типа проводимости приводит к смене знака основных носителей тока на поверхности, а на поверхности кремния *p*-типа образуется обогащенный дырками слой. Различная динамика изменений холловского напряжения и напряжения сопротивления в пределах первого монослоя адсорбции железа на подложки как с *p*-*n*-переходом, так и со слоем, обогащенным дырками, не связана с проводимостью по адсорбированному слою. Проводимость в слое железа с толщиной более трех монослоев обусловлена в обоих случаях переносом электронов со слоевой концентрацией $2 \cdot 10^{13} - 2 \cdot 10^{14} \text{ см}^{-2}$ и подвижностью 65–90 см²/(B · c).

Исследование транспортных свойств двумерных материалов в сверхвысоком вакууме на монокристаллических полупроводниковых подложках является актуальной задачей физики полупроводников. В то же время измерения эффекта Холла в сверхвысоком вакууме (in situ) [1,2] не стали в настоящее время достаточно распространенным методом исследования транспортных свойств сверхтонких пленок и адсорбированных слоев на кремниевых подложках. Это связано с техническими трудностями достижения в вакуумной камере достаточно высоких магнитных полей, а также с трудоемкостью измерений. Низкие температуры (гелиевые) традиционно выбираются при измерениях проводимости [3] и подвижности [1,2] in situ для вымораживания носителей в кремниевых подложках и решения проблемы шунтирования подложкой сверхтонких пленок. В процессе измерений проводимости при комнатной температуре распространен другой способ, позволяющий не учитывать шунтирующее действие подложки. Это использование высокоомного кремния с удельным сопротивлением более 500 Ом · см [4]. Однако нам известны работы лишь одной группы авторов [5-7], в которых была сделана попытка измерить при комнатной температуре холловское напряжение и напряжение удельного сопротивления на атомарно-чистом кремнии с исходным удельным сопротивлением 5-20 Ом · см и при адсорбции на него атомов Ag, Au, In. К сожалению, полученные данные не были проинтерпретированы в терминах подвижности основных носителей тока со ссылкой на неперпендикулярность образцу силовых линий магнитного поля и большой разброс экспериментальных ланных.

Нам удалось изготовить и ввести в эксплуатацию [8] сверхвысоковакуумную установку со встроенной в камеру холловской приставкой с прижимной 6-зондовой головкой, работающей на переменном электрическом токе и двухполярном импульсном магнитном поле и управляемой компьютером. Она позволяет с ошибкой менее 1.5% измерять напряжение, пропорциональное эдс Холла $(U_{\rm H})$, и напряжение сопротивления (U_{ρ}) на атомарно-чистой поверхности кремния и после адсорбции на ней металлов при различных температурах. Это открыло возможность прецизионного исследования изменений холловских параметров при послойном осаждении металлов на кремний в субмонослойном и монослойном диапазонах толщин в пределах так называемого "мертвого" слоя, когда отсутствует проводимость по адсорбированному слою. В этом случае могут наблюдаться изменения проводимости области пространственного заряда кремниевой подложки и возможен вклад в проводимость от перезарядки поверхностных состояний, образованных при взаимодействии атомов металла с кристаллической решеткой кремния [5]. Подобные изменения могут быть обнаружены и учтены только при холловских измерениях в сверхвысоком вакууме. Однако сравнительные холловские измерения in situ на кремниевых подложках с разным типом проводимости до и после формирования атомарно-чистой поверхности ранее не проводились. Неизвестны также данные холловских измерений in situ для субмонослойных покрытий железа на поверхности Si (111) 7×7 , несмотря на то что начальные стадии роста железа и его силицидов на кремнии привлекают большое внимание исследователей [9–11] как с фундаментальной, так и с прикладной точек зрения.

Цель данной работы — исследование изменений холловских параметров кремниевых подложек *n*- и *p*-типа проводимости при формировании атомарно-чистой поверхности кремния Si (111) 7×7 в сверхвысоком вакууме, а также исследование процесса проводимости в образцах при адсорбции субмонослойных и монослойных покрытий железа на Si (111) 7×7 при комнатной температуре.

[¶] Fax: (4232) 310452

E-mail: galkin@iacp.vl.ru

Состояние подложки	Основные носители	$ ho_{ ext{eff}},$ Ом \cdot см	$\mu_{ ext{eff}}, \ \mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$	$n_{\rm eff},$ ${ m cm}^{-3}$	$\sigma_{s}, \ \mathrm{Om}^{-1}$	R_{H}^{s} , см ² · Кл ⁻¹	$\mu_s, \ \mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$	n_s , cm ⁻²
Si (111) <i>n</i> -тип (сертификат)	Электроны	4.5	1450	$1\cdot 10^{15}$	-	-	-	-
Si (111) <i>n</i> -тип с окислом	Электроны	5.3	1420	$8.2\cdot10^{14}$	_	_	_	—
Si (111) 7 × 7 <i>п</i> -тип	Дырки	26.3	90	$2.6 \cdot 10^{15}$	-	_	—	—
$d_{ m Fe}=0.1$ нм	Электроны	_	_	-	$1.3 \cdot 10^{-3}$	$-2.2 \cdot 10^{5}$	293	$2.9 \cdot 10^{13}$
$d_{ m Fe}=0.2$ нм	Электроны	_	_	-	$1.9 \cdot 10^{-3}$	$-6.3 \cdot 10^{4}$	117	$9.9 \cdot 10^{13}$
$d_{ m Fe}=0.3$ нм	Электроны	_	_	-	$2.3 \cdot 10^{-3}$	$-2.8\cdot10^4$	65	$2.2 \cdot 10^{14}$
Si (111) <i>р</i> -тип (сертификат)	Дырки	10	550	$8\cdot 10^{14}$	-	-	—	—
Si (111) 7 × 7 <i>р</i> -тип	Дырки	5.4	330	$3.9\cdot10^{15}$	_	_	_	—
$d_{ m Fe}=0.25$ нм	Электроны	-	_	-	$3.4 \cdot 10^{-4}$	$-5.2 \cdot 10^{5}$	167	$1.25 \cdot 10^{13}$
$d_{ m Fe}=0.3$ нм	Электроны	-	—	—	$3.8 \cdot 10^{-4}$	$-2.4 \cdot 10^{5}$	90	$2.6 \cdot 10^{13}$

Сверхвысоковакуумная камера с базовым давлением 5 · 10⁻¹⁰ Торр оснащена анализатором ДМЭ, испарительным блоком на три источника (Cr, Fe, Si) с экраном, охлаждаемым жидким азотом, холловской приставкой с компьютеризированной измерительной системой [8], держателем образца с системами прямого и косвенного прогрева и кварцевым датчиком толщины. В качестве образцов использовали Si (111)-подложки $(17 \times 5.8 \times 3 \text{ мм}^3)$ *п*-типа ($\rho = 4.5 \text{ Ом} \cdot \text{см}$) и *р*-типа $(\rho = 10 \, \text{Om} \cdot \text{cm})$ проводимости. Перед загрузкой в вакуумную камеру образцы химически очищались. Собственный окисел и остаточные углеродные загрязнения удалялись в процессе высокотемпературного отжига при температуре 1250°С в течение 120-180 с. Температура образца в диапазоне 350-1250°C определялась из измерений проводимости и по оптическому пирометру. Скорость осаждения железа в экспериментах составляла $(6-8) \cdot 10^{-4}$ нм/с.

Холловские измерения in situ начинались с измерений на поверхности Si (111) *п*-типа проводимости, покрытой собственным окислом. Был определен диапазон токов через образец и магнитных полей, для которых наблюдались линейные зависимости холловского напряжения. Измеренный знак напряжения Холла был отрицательным. Это подтвердило, что основными носителями в подложке являлись электроны с параметрами, близкими к данным сертификата (см. таблицу). После формирования атомарно-чистой поверхности Si (111) 7 × 7 наблюдалась инверсия знака напряжения Холла, уменьшение его амплитуды и сильное увеличение удельного сопротивления (см. таблицу). Такое поведение свидетельствует о формировании *p*-*n*-перехода в приповерхностной области кремниевой подложки. При этом электроны в *n*-слое оказывают компенсирующее влияние на вклад дырок от р-слоя в напряжение Холла, что уменьшает суммарную амплитуду напряжения Холла [12]. Известно, что при высокотемпературном отжиге *p*-слой образуется с двух сторон однородного легированного образца п-типа проводимости [13]. Холловские измерения, проводимые с одной стороны на такой подложке, не могут позволить определить параметры р-слоев. Поэтому для удобства расчетов мы ввели понятие эффективных параметров кремниевой подложки ($n_{\rm eff}$, $\mu_{\rm eff}$, $\sigma_{\rm eff}$), которые рассчитываются из измеренных данных в предположении однородности легирования подложки. Расчеты холловских параметров эффективной подложки показали резкое снижение величины подвижности основных носителей от 1420 до 90 см²/(B·c) и изменение их типа (см. таблицу). При осаждении на такую подложку металлического или полупроводникового слоя с некоторой проводимостью стандартная двухслойная модель [2] может быть использована для расчетов холловских параметров осажденного слоя:

$$U_{\rm H\,tot} = I_0 B_z K_R (\sigma_1^2 R_{\rm H1} d_1 - \sigma_2^2 R_{\rm H2} d_2) / (\sigma_1 d_1 + \sigma_2 d_2), \ (1)$$

$$\sigma_{\rm tot} = (\sigma_1 d_1 + \sigma_2 d_2) / (d_1 + d_2), \tag{2}$$

где I_0 , B_z и K_R — ток образца, магнитная индукция и коэффициент формы соответственно. Величины проводимости σ_1 , коэффициента Холла $R_{\rm H1}$ и толщины d_1 характеризуют слой железа, а величины σ_2 , $R_{\rm H2}$, d_2 соответствуют подложке с эффективными параметрами.

Прецизионные измерения на подложке Si (111) p-типа проводимости с собственным окислом не удалось провести из-за неомичности прижимных контактов. Однако после высокотемпературного отжига и получения атомарно-чистой поверхности Si (111) 7 × 7 контакты стали омическими во всем диапазоне использованных токов (5–40 мкА). Рассчитанные холловские параметры подложки несколько отличались от данных сертификата (см. таблицу), что связано с увеличением концентрации дырок в приповерхностной области кремния [13]. Следовательно, рассчитанные холловские параметры также можно рассматривать как эффективные для кремниевой подложки p-типа проводимости.

На рис. 1 представлены зависимости напряжения Холла $(U_{\rm H})$ и напряжения сопротивления (U_{ρ}) при адсорбции атомов железа при комнатной температуре на поверхности Si (111) 7 × 7 с исходной подложкой *n*-типа проводимости. Осаждение Fe проводили порциями по 0.005, 0.01 и 0.025 нм в зависимости от толщины осажденного слоя. В субмонослойной области толщин до 0.025 нм было обнаружено, что измеряемый знак напряжения Холла (рис. 1) изменяется с положительного

Рис. 1. Зависимости холловского напряжения $U_{\rm H}$ (1) и напряжения сопротивления U_{ρ} (2) от толщины осажденного слоя железа ($d_{\rm Fe}$) на поверхности Si(111)7 × 7 с исходной подложкой *n*-типа проводимости. Ток через образец 30 мкА, магнитная индукция 0.016 Тл.

на отрицательный. При толщине слоя железа 0.1 нм наблюдается максимальное по модулю напряжение Холла, которое затем уменьшается с ростом толщины слоя железа. При этом напряжение сопротивления (рис. 1) уменьшается сначала резко до толщины $d_{\rm Fe} = 0.05$ нм, а затем наклон кривой уменьшается при 0.1 нм и далее практически не изменяется. По данным спектроскопии ионного рассеяния и сканирующей туннельной микроскопии известно [10], что атомы железа диффундируют под первый монослой подложки Si (111) уже при комнатной температуре, выталкивая на поверхность атомы кремния. Это приводит к разупорядочению сверхструктуры Si (111) 7 \times 7 на поверхности. В наших экспериментах суперрефлексы 7 × 7 исчезали при толщине слоя железа 0.025 нм, а основные рефлексы (1×1) сохранялись до 0.3 нм толщины слоя железа. Известно, что металлический характер проводимости, по данным ультрафиолетовой фотоэлектронной спектроскопии [10], наблюдался только после осаждения на Si (111) 7×7 более трех монослоев железа (1 монослой соответствует 0.083 нм). Резкий спад напряжения сопротивления в субмонослойной области толщин (0.01-0.06 нм, рис. 1), следовательно, не может быть объяснен проводимостью по адсорбированному слою железа. Известно, что атомы железа находящиеся в кристаллической решетке кремния, дают глубокие донорные состояния в запрещенной зоне кремния [14] с энергиями $E_v - 0.40$ эВ и $E_c - 0.53$ эВ. Разумным физическим объяснением изменения знака эффекта Холла и увеличения измеряемой проводимости при адсорбции атомов железа в субмонослойной области толщин (рис. 1) может быть только образование, а затем зарядка донорных поверхностных состояний [5] за счет внедренных в кремниевую кристаллическую решетку атомов железа [10]. Это должно приводить к захвату ими (pinning) уровня Ферми. В этом случае с ростом толщины слоя железа приповерхностная область кремния обогащается электронами, которые быстро компенсируют вклад в эффект Холла от р-слоя кремния, образованного при высокотемпературном отжиге. По завершении одного монослоя атомов железа процесс накопления электронов за счет перезарядки поверхностных состояний, по-видимому, прекращается. Рассчитанные в рамках двухслойной модели параметры адсорбированного слоя приведены в таблице. Видно, что с ростом толщины слоя железа от 0.1 до 0.3 нм увеличивается концентрация основных носителей (электронов) в слое с $2.9 \cdot 10^{13}$ см⁻² до $2.2 \cdot 10^{14}$ см⁻². При этом уменьшается их подвижность от $293 \text{ см}^2/(B \cdot c)$ до $65 \text{ см}^2/(B \cdot c)$, что приводит к резкому уменьшению вклада электронов в измеренное холловское напряжение (рис. 1). Следовательно, проводимость по адсорбированному слою железа начинается при покрытиях железа более трех монослоев и поддерживается электронами.

На рис. 2 представлены зависимости напряжения Холла $(U_{\rm H})$ и напряжения сопротивления (U_{ρ}) при адсорбции атомов железа при комнатной температуре на поверхности Si (111) 7 × 7 с исходной подложкой *р*-типа проводимости. Осаждение железа также проводили с переменным шагом по 0.005, 0.01 и 0.025 нм в зависимости от толщины осажденного слоя. Наблюдаемая картина совершенно не коррелирует с поведением атомов железа на кремниевой подложке с исходным *п*-типом проводимости (рис. 1). В диапазоне толщин до 0.15 нм основные изменения происходят с напряжением U_{ρ} , а величина U_H проявляет лишь слабую тенденцию к уменьшению (рис. 2). При этом наблюдается максимум напряжения сопротивления, что соответствует увеличению примерно на 6% удельного сопротивления подложки при осаждении атомов железа в субмонослойной области толщин. Увеличение напряжения U_ρ наблюдалось ранее только при осаждении атомов золота и цезия

Рис. 2. Зависимости холловского напряжения $U_{\rm H}$ (1) и напряжения удельного сопротивления U_{ρ} (2) от толщины осажденного слоя железа ($d_{\rm Fe}$) на поверхности Si (111) 7 × 7 с исходной подложкой *p*-типа проводимости. Ток через образец 30 мкА, магнитная индукция 0.016 Тл.

на упорядоченные сверхструктуры Si (111) 5×2 -Au и Si (111) $\sqrt{3} \times \sqrt{3}$ -Au [5–7], но не наблюдалось при осаждении Au, Ag, In на Si (111) 7×7 [5]. Максимум U_{ρ} (рис. 2), по-видимому, также связан с влиянием захвата донорными поверхностными состояниями уровня Ферми на проводимость области пространственного заряда. Электроны с донорных поверхностных состояний будут в этом случае лишь частично компенсировать большую концентрацию дырок с акцепторных уровней в приповерхностной области подложки р-типа проводимости, и приводить, следовательно, к росту удельного сопротивления измеряемого слоя. Дальнейшее увеличение толщины слоя железа до 0.2 нм (более двух монослоев) и выше приводит к достаточно резкому уменьшению холловского напряжения и напряжения сопротивления (рис. 2). При этом удельное сопротивление образца становится меньше удельного сопротивления образца с атомарно-чистой поверхностью. Процесс проводимости по адсорбированному слою, как и для случая подложки *п*-типа проводимости, начинается при толщине слоя железа выше трех монослоев. По данным расчетов (см. таблицу), проводимость в слое железа также поддерживается электронами со слоевой концентрацией $2.5 \cdot 10^{13} \, \text{см}^{-2}$ и подвижностью $90 \, \text{см}^2/(\text{B} \cdot \text{c})$. Использование упрощенной модели эффективной подложки для провоящих адсорбированных слоев железа на кремниевых подложках *n*- и *p*-типа проводимости привело к получению близких значений основных холловских параметров. Это свидетельствует о достаточной корректности модели и о возможности ее применения при расчетах транспортных свойств адсорбированных слоев других металлов на атомарно-чистых поверхностях кремния из данных холловских измерений in situ при комнатной температуре.

Исследования эффекта Холла при формировании атомарно-чистой поверхности кремния Si (111) 7 × 7 показали, что высокотемпературный отжиг уже при температуре 1250°С приводит к образованию встроенного р-п-перехода на поверхности кремния п-типа проводимости и смене знака холловского напряжения, а на поверхности кремния р-типа проводимости образуется обогащенный дырками слой. Исследования адсорбции атомов железа на подложки с p-n-переходом и со слоем, обогащенным дырками, позволили предположить образование донорных поверхностных состояний, перезарядка которых приводит к различной динамике изменений холловского напряжения и напряжения сопротивления в пределах первого монослоя. Проводимость в слое железа при толщинах более трех монослоев обусловлена в обоих случаях переносом электронов со слоевой концентрацией $2 \cdot 10^{13} - 2 \cdot 10^{14} \, \mathrm{сm}^{-2}$ и подвижностью $65-90 \, \text{cm}^2/(\text{B} \cdot \text{c}).$

Авторы признательны В.Г. Лифшицу за плодотворные обсуждения.

Работа выполнена при финансовой поддержке РФФИ (проект № 99-02-16833), Государственной

программы "Атомные поверхностные структуры" (проект № 2.12.99) и программы Министерства общего и профессионального образования РФ "Фундаментальные исследования в области электроники и радиотехники" (проект № 98-3.1.11).

Список литературы

- S. Neun, J. Bange, R. Schad, M. Henzler. J. Phys.: Condens. Matter, 5, 2913 (1993).
- [2] F. Jentzsch, H. Froitzheim, R. Theile. J. Appl. Phys., 66, 5901 (1989).
- [3] V.A. Gasparov, K.R. Nikolaev. Phys. Low-Dim. Structur. 1/2, 53 (1996).
- [4] M. Henzler, C. Adamski, K. Rönner, J. Vac. Sci. Technol. A, 5, 2127 (1987).
- [5] S. Hasegawa, S. Ino. Int. Modern Phys. B, 7, 3817 (1993).
- [6] S. Hasegawa, X. Tong, C.-S. Jiang, Y. Nakajima, T. Nagao. Surf. Sci., 386, 322 (1997).
- [7] X. Tong, C.-S. Jiang, S. Hasegawa. Phys. Rev. B, 57, 9015 (1998).
- [8] Н.Г. Галкин, В.А. Иванов, А.В. Конченко, Д.Л. Горошко. ПТЭ, № 2, 154 (1999).
- [9] E.G. Michel. Appl. Surf. Sci., 117/118, 294 (1997).
- [10] J. Alvarez, A.L. Vazguez de Parga, J.J. Hinarejos, J. de la Figuera, E.G. Michel, C. Ocal, R. Miranda. Phys. Rev. B, 47, 16 048 (1993).
- [11] K.L. Whiteaker, I.K. Robinson, C. Benson, D.M. Smilgies, N. Onda, H. von Känel. Phys. Rev. B, **51**, 9715 (1995).
- [12] В.Л. Коньков. Завод. лаб., XXXII(4), 451 (1966).
- [13] M. Liehr, M. Renier, R.A. Wachnik, G.S. Scilla. J. Appl. Phys., 61, 4619 (1987).
- [14] В.В. Емцев, Т.В. Машовец. Примеси и точечные дефекты в полупроводниках (М., Радио и связь, 1981) гл. 2, с. 101.

Редактор Т.А. Полянская

Hall effect in submonolayer systems: Fe on Si (111) of *n*- and *p*-type of conductivity

N.G. Galkin*, D.L. Goroshko, A.V. Konchenko*, E.S. Zakharova, S.Ts. Krivoshchapov

Institute for Automation and Control Processes, The Far Eastern Branch of Russian Academy of Sciences, 690041 Vladivostok, Russia *Far Eastern State Technical University, 690069 Vladivostok, Russia

Abstract It is shown by in situ Hall effect measurements at room temperature that the occurrence of an atomically clean silicon surface (Si (111) 7×7) alongside with high temperature annealing ($T = 1250^{\circ}$ C, t = 120-180 s) the *n*-type conductivity silicon results in the change of majority carriers on the surface. But on the surface of a *p*-type conductivity silicon it leads to formation of a hole-accumulating layer.