Поверхностные магнитоплазменные волны в ферромагнитном полупроводнике и их возбуждение магнитным диполем

© В.Л. Фалько, С.И. Ханкина, В.М. Яковенко

Институт радиофизики и электроники им. А.Я. Усикова Национальной академии наук Украины, 310085 Харьков, Украина

(Получена 26 ноября 1999 г. Принята к печати 29 декабря 1999 г.)

Исследуются собственные колебания электромагнитного поля на границе вакуум-ферромагнитный полупроводник. Найдены их закон дисперсии и область существования. Показана возможность их возбуждения магнитным диполем, расположенным над поверхностью среды. Определены поля и плотность потока энергии поверхностных волн в вакууме.

1. На протяжении многих лет неизменный интерес вызывают проводящие магнитные материалы, в частности ферромагнитные полупроводники [1-4], что связано с их уникальными свойствами. Многие из этих свойств могут быть использованы и уже применяются для практических целей, таких как создание различных систем обработки информации, линий задержки, фильтров, новой элементной базы интегральных схем. Магнитные полупроводники несомненно заслуживают внимания и с общефизической точки зрения, поскольку в этих средах возникают квазичастицы нового типа, происходит разделение фаз в основном состоянии, особые свойства проявляют магнитосопротивление и т.д. При создании микроструктур на их основе немаловажную роль играют физические процессы, протекающие на поверхности. К ним относятся и эффекты, связанные с особенностями возбуждения и распространения поверхностных электромагнитных волн.

2. В цикле работ (см. литературу в [5]) теоретически и экспериментально показано, что на границе проводящей среды и вакуума в магнитном поле существуют медленные магнитоплазменные волны — поверхностные геликоны. Они возникают в сильных магнитных полях, если проводимость полупроводника вдоль магнитного поля наибольшая. При этом предполагается, что полный ток (смещения и проводимости) поперек магнитного поля мал по сравнению с продольным. В системе координат с осью *OZ*, параллельной вектору магнитного поля **H**₀ и осью *OY*, направленной вдоль нормали к поверхности раздела сред (y < 0 — полупроводник), выполняются следующие неравенства для компонент тензора диэлектрической проницаемости $\varepsilon_{ik}(\omega)$ полупроводника:

$$|\varepsilon_{zz}| \gg |\varepsilon_{xy}| \gg |\varepsilon_{xx}|, \tag{1a}$$

$$|\varepsilon_{zz}\varepsilon_{xx}| \gg |\varepsilon_{xy}^2| \tag{16}$$

(ω — частота волны). Такие условия реализуются, например, в двухкомпонентной плазме, когда плотности и массы электронов и дырок существенно отличны. Спектр поверхностных геликонов $\omega(\mathbf{k})$ определяется холловской компонентой диэлектрической проницаемости ε_{xy} из уравнения

$$k_z^2 = -\frac{i\varepsilon_{xy}}{2}\operatorname{sign} k_x \frac{\omega^2}{c^2} \quad (k_x^2 \gg k_z^2).$$
 (2)

Очевидно, что волна распространяется только при условии

$$(+i\varepsilon_{xy}\mathrm{sign}k_x) < 0, \tag{3}$$

а ее частота равна

$$\omega = 2 \, \frac{k_z^2 c^2 |\omega_{H\alpha}|}{\omega_{0\alpha}^2} \tag{4}$$

 $(\omega_{0\alpha}$ и $\omega_{H\alpha}$ — плазменная и циклотронная частоты носителей того типа, который дает наибольший вклад в холловскую проводимость).

Затухание поверхностных геликонов обусловлено компонентой диэлектрической проницаемости ε_{xx} и, как следует из условий (1*a*), значительно меньше частоты (4).

В этих волнах компоненты магнитного поля велики по сравнению с компонентами электрического поля, причем $E_z \cong 0$. Отметим, что поверхностные геликоны существуют в ограниченной области углов

$$1 < tg^2 \vartheta \quad \sin^2 \vartheta \cos^2 \vartheta \gg \frac{\omega_0^4}{c^4 k^4} \frac{\omega^2}{\omega_H^2} \tag{5}$$

 $(\vartheta$ — угол между векторами **H**₀ и **k**_{\perp} = $(k_x, 0, k_z)$). Первое условие выделяет область углов $\pi/4 + n\pi < \vartheta < 3\pi/4 + n\pi (n = 0, 1)$, а второе неравенство исключает окрестности углов $\vartheta = \pi/2 + n\pi$.

Так как слабо затухающие поверхностные геликоны существуют в широком интервале частот

$$\omega_{H\alpha} \gg \omega,$$
 (6)

а их фазовые скорости регулируются величиной внешнего магнитного поля \mathbf{H}_0 , становится возможным их взаимодействие с волнами различной природы (спиновыми, звуковыми), а также с электронными пучками.

Отметим, что характер распространения этих волн определяется свойствами не только полупроводника, но и пограничной с ним среды. В работе [6] получены связанные поверхностные геликон-спиновые волны, которые возникают на границе полупроводника и феррита. Взаимодействие геликонов с электронной подсистемой феррита вблизи поверхности раздела приводит к существенному изменению частоты возбуждаемых колебаний: она оказывается зависящей как от холловской компоненты ε_{xy} , так и от компонент тензора магнитной проницаемости феррита $\mu_{ik}(\omega)$. Уравнение для поверхностных волн на границе полупроводник-феррит имеет вид [6]

$$k_z^2 = -i\varepsilon_{xy} \frac{\omega^2}{c^2} \operatorname{sign} k_x \frac{\mu_{xx} + i\operatorname{sign} k_x \mu_{xy}}{1 + \mu_{xx} + i\operatorname{sign} k_x \mu_{xy}}, \qquad (7)$$

где компоненты $\mu_{ik}(\omega)$ равны

$$\mu_{xx} = \mu_{yy} \equiv \mu = 1 + \frac{\omega_g \omega_M}{\omega_g^2 - \omega^2}; \quad \mu_{zz} = 1;$$

$$\mu_{xy} = -\mu_{yx} = \frac{i\omega\omega_M}{\omega_g^2 - \omega^2}, \quad (8)$$

$$\mu_{xz} = \mu_{zx} = \mu_{yz} = \mu_{zy} = 0;$$

$$\omega_g = g(H_0 + \beta M); \quad \omega_M = 4\pi g M,$$

g — магнитомеханическое отношение, β — константа анизотропий. (Магнитное поле **H**₀ направлено вдоль оси анизотропии и совпадает с направлением равновесного магнитного момента ферромагнетика **M**).

Можно показать, что область существования волны (7) иная, чем у поверхностного геликона (4). Действительно, подставив в уравнение (7) выражение (8), получим

$$k_z^2 = -\frac{i\varepsilon_{xy}}{2}\operatorname{sign}k_x \frac{\omega^2}{c^2} \frac{\omega_g + \omega_M + \operatorname{sign}k_x \omega}{\omega_g + \frac{\omega_M}{2} + \operatorname{sign}k_x \omega}.$$
 (9)

Рассмотрим полупроводник, в котором выполняется неравенство $i\varepsilon_{xy} < 0$. В геометрии, когда $k_x > 0$, поверхностная волна (9) существует при любых частотах $\omega < \omega_H$. В случае, когда $k_x < 0$, для этих волн выделяется полоса прозрачности

$$\omega_g + \frac{\omega_M}{2} < \omega < \omega_g + \omega_M \quad (i\varepsilon_{xy} < 0, k_x < 0)$$
 (10)

(вне этой полосы $k_z^2 < 0$). В полупроводниках электронного типа ($i\varepsilon_{xy} < 0$) для $k_x > 0$ поверхностная волна не возникает. В таких полупроводниках волна существует при $k_x < 0$ вне частотной полосы (10), т.е. при частотах, удовлетворяющих неравенствам

$$\omega < \omega_g + \frac{\omega_M}{2}$$
 и $\omega < \omega_g + \omega_M$ ($i\varepsilon_{xy} > 0, k_x < 0$). (11)

Затухание поверхностной волны (7) так же, как и поверхностного геликона (2), связано с компонентой ε_{xx} .

3. В настоящем сообщении рассматривается структура, которая состоит из магнитного полупроводника с двумя типами носителей (среда 1, y < 0) и вакуума (среда 2, y > 0). Распространение волн в среде 1 описывается системой уравнений, состоящей из уравнений Максвелла и материальных уравнений, которые определяют связь между полями $\mathbf{E}^{(1)}$ и $\mathbf{H}^{(1)}$ и индукциями $\mathbf{D}^{(1)}$ и $\mathbf{B}^{(1)}$. В компонентах Фурье материальные уравнения имеют вид (без учета пространственной дисперсии): $D_i^{(1)} = \varepsilon_{ik}(\omega)E_k^{(1)}$, $B_i^{(1)} = \mu_{ik}(\omega)H_k^{(1)}$.

Компоненты тензора диэлектрической проницаемости ферромагнитного полупроводника имеют вид

$$\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon - \sum_{\alpha} \frac{\omega_{0\alpha}^2 (\omega + i\nu_{\alpha})}{\omega[(\omega + i\nu_{\alpha})^2 - \omega_{H\alpha}^2]}, \quad (12)$$

$$arepsilon_{xy} = -arepsilon_{yx} = -\sum_{lpha} rac{i\omega_{0lpha}^2 \omega_{Hlpha}}{\omega[(\omega + i
u_{lpha})^2 - \omega_{Hlpha}^2]},$$

 $arepsilon_{zz} = arepsilon_0 - \sum_{lpha} rac{\omega_{0lpha}^2}{(\omega + i
u_{lpha})\omega},$

а компоненты тензора магнитной проницаемости задаются формулами (8). При выполнении условий (1а) в магнитном полупроводнике распространяются две волны, для которых нормальные компоненты волнового вектора равны

$$k_{y1}^{2} = -k_{x}^{2} - \frac{k_{z}^{2}}{\mu} - \frac{\omega^{4}}{c^{4}k_{z}^{2}} \varepsilon_{xy}^{2} \frac{\mu^{2} + \mu_{xy}^{2}}{\mu} - 2 \frac{\mu_{xy}}{\mu} \frac{\omega^{2}}{c^{2}} \varepsilon_{xy}, \quad (13)$$
$$k_{y2}^{2} = -\frac{\varepsilon_{zz}}{\varepsilon_{xx}} \left(k_{z}^{2} - \frac{\omega^{2}}{c^{2}} \varepsilon_{xx} \frac{\mu^{2} + \mu_{xy}^{2}}{\mu} \right). \quad (14)$$

(Положив в (13) и (14) $\mu = 1$, $\mu_{xy} = 0$, получим значения нормальных компонент волновых векторов необыкновенной и обыкновенной волн в обычном полупроводнике). Компоненты полей в этих волнах связаны следующими соотношениями.

В волне "1" (13)

$$H_{x1} = \frac{H_{y1}}{\Delta} \left[-k_x (k_x \mu_{xy} + k_{y1} \mu) + \frac{\omega^2}{c^2} (\mu_{xy} \varepsilon_{xx} + \mu \varepsilon_{xy}) \right. \\ \left. + \frac{k_x}{\varepsilon_{zz}} (k_{y1} \varepsilon_{xx} - k_x \varepsilon_{xy}) \right], \\ H_{z1} = \frac{H_{y1}}{k_z \Delta} \left\{ -k_z^2 (k_x \mu_{xy} + k_{y1} \mu) + (k_{y1} \varepsilon_{xx} - k_x \varepsilon_{xy}) \right. \\ \left. \times \left[\frac{\omega^2}{c} (\mu^2 + \mu_{xy}^2) - \frac{\mu}{\varepsilon_{zz}} (k_x^2 + k_{y1}^2) \right] \right\}, \\ E_{z1} = -\frac{c}{\omega \varepsilon_{zz}} (k_x H_{y1} - k_{y1} H_x), \\ E_{x1} = -\frac{k_x c (k_x H_{y1} - k_{y1} H_{x1})}{k_z \omega \varepsilon_{zz}} + \frac{\omega}{k_z c} (-\mu_{xy} H_{x1} + \mu H_{y1}), \\ E_{y1} = -\frac{k_y c (k_x H_{y1} - k_{y1} H_{x1})}{k_z \omega \varepsilon_{zz}} - \frac{\omega}{k_z c} (\mu H_{x1} + \mu_{xy} H_{y1}), \\ \Delta = k_x (k_x \mu - k_{y1} \mu_{xy}) + k_z^2 \\ \left. - \frac{\omega^2}{c^2} (\mu \varepsilon_{xx} - \mu_{xy} \varepsilon_{yy}) + \frac{k_{y1}}{\varepsilon_{zz}} (k_{y1} \varepsilon_{xx} - k_x \varepsilon_{xy}). \right]$$

(Заметим, что в диагональных компонентах тензора ε_{ik} (12) можно пренебречь величиной ε_0 в силу малости тока смещения по сравнению с током проводимости).

Физика и техника полупроводников, 2000, том 34, вып. 6

В волне "2" (14)

$$H_{x2} = -\frac{k_{yz}}{k_x} H_{y2}, \quad H_{z2} = -\frac{\varepsilon_{xy}}{\varepsilon_{xx}} \frac{k_z}{k_x} H_{y2}, \quad (16)$$
$$E_{x2} = \frac{k_z c}{\omega \varepsilon_{xx}} H_{y2}, \quad E_{y2} = \frac{k_{y2}}{k_x} E_{x2},$$
$$E_{z2} = \frac{k_z^2 - \frac{\omega^2}{c^2} \varepsilon_{xx}}{k_x \varepsilon_{xx}} \frac{c}{\omega} H_{y2}.$$

В вакууме волны распадаются на H-волны ($E_z = 0$) и E-волны ($H_z = 0$).

В Н-волне

$$H_{x1}^{(2)} = \frac{k_x}{k_{y0}} H_{y1}^{(2)}, \quad H_{z1}^{(2)} = -\frac{k_x^2 + k_{y0}^2}{k_{y0}k_z} H_{y1}^{(2)}, \tag{17}$$

$$E_{z1}^{(2)} = 0, \quad E_{x1}^{(2)} = \frac{\omega}{ck_z}H_{y1}^{(2)}, \quad E_{y1}^{(2)} = -\frac{k_x}{k_zk_{y0}}\frac{\omega}{c}H_{y1}^{(2)}.$$

В Е-волне

$$H_{z2}^{(2)} = 0, \quad H_{x2}^{(2)} = -\frac{k_{y0}}{k_x} H_{y2}^{(2)},$$
 (18)

$$\begin{split} E_{z2}^{(2)} &= -\frac{c}{\omega} \frac{(k_x^2 + k_{y0}^2)}{k_x} H_{y2}^{(2)}, \quad E_{x2}^{(2)} = -\frac{k_z c}{\omega} H_y^{(2)}, \\ E_{y2}^{(2)} &= -\frac{k_z k_{y0}}{k_x} \frac{c}{\omega} H_{y2}^{(2)}, \quad k_{y0}^2 = -k_x^2 - k_z^2 + \frac{\omega^2}{c^2}. \end{split}$$

В качестве граничных условий на плоскости y = 0 выбираем непрерывность тангенциальных компонент магнитных и электрических полей, а также нормальной компоненты вектора магнитной индукции. Подставляя соотношения (16)–(18) в граничные условия, получим выражения, определяющие спектр и затухание поверхностных волн на границе магнитный полупроводник–вакуум. Поверхностные волны, распространяющиеся в плоскости *XOZ*, возникают, если выполняются условия

$$k_x^2 > \frac{k_z^2}{\mu}, \quad \frac{\omega^4}{c^4 k_z^2} \varepsilon_{xy}^2 \frac{\mu^2 + \mu_{xy}^2}{\mu}, \quad \frac{\mu_{xy}}{\mu} \frac{\omega^2}{c^2} \varepsilon_{xy}.$$
 (19)

Спектр невзаимных "косых" поверхностных волн задается уравнением

$$k_z^2 = k_{z0}^2 \equiv -i \frac{\omega^2}{c^2} \varepsilon_{xy} \text{sign} k_x$$
$$\times \frac{(\mu - i\mu_{xy} \text{sign} k_x)(1 - i\mu_{xy} \text{sign} k_x)}{1 + \mu - i\mu_{xy} \text{sign} k_x}$$
(20)

Затухание этой связанной геликон-спиновой волны (так же как и поверхностного геликона (4)) пропорционально эффективной частоте столкновений носителей. Подставляя в (20) значения компонент тензора μ_{ik} (8), получим

$$k_z^2 = k_{z0}^2 \equiv i \frac{\omega^2}{c^2} \frac{\varepsilon_{xy}}{2} \operatorname{sign} k_x \\ \times \frac{(\omega_g + \omega_M - \omega \operatorname{sign} k_x)(\omega - \omega_1)(\omega + \omega_2)}{(\omega_g + \frac{\omega_M}{2} - \omega \operatorname{sign} k_x)(\omega_g^2 - \omega^2)}, \quad (21)$$

где $\omega_{1,2} = \sqrt{\omega_g^2 + \frac{\omega_M^2}{4}} \pm \frac{\omega_M}{2}$ sign k_x . В дырочных полупроводниках ($i\varepsilon_{xy} < 0$) в отрицательном направлении оси

Физика и техника полупроводников, 2000, том 34, вып. 6

 $O\!X~(k_x<0,$ и следовательно, $\omega_1<\omega_g)$ распространяются волны с частотами

$$\omega_1 < \omega < \omega_g \quad \left(\frac{5\pi}{4} < \vartheta < \frac{7\pi}{4}\right), \quad (i\varepsilon_{xy} < 0).$$
 (22)

При $k_x > 0$ для ω_1 выполняются условия $\omega_g + \frac{\omega_M}{2} < \omega_1 < \omega_g + \omega_M$ и гибридные волны (21) могут существовать в трех областях частот:

$$0 < \omega < \omega_{g}; \quad \omega_{g} + \frac{\omega_{M}}{2} < \omega + \omega_{1};$$
$$\omega > \omega_{g} + \omega_{M} \left(\frac{\pi}{4} < \vartheta < \frac{3\pi}{4}\right), \quad (i\varepsilon_{xy} < 0).$$
(23)

В электронных полупроводниках ($i\varepsilon_{xy} > 0$) для поверхностных волн появляются следующие области прозрачности: при $k_x < 0$

$$0 < \omega < \omega_1$$
 и $\omega > \omega_g$,
 $\left(i\varepsilon_{xy} > 0, \quad \frac{5\pi}{4} < \vartheta < \frac{7\pi}{4}\right),$ (24)

при $k_x > 0$

$$egin{aligned} &\omega_g < \omega < \omega_g + rac{\omega_M}{2}, & \omega_1 < \omega < \omega_g + \omega_M, \ & \left(iarepsilon_{xy} > 0, & rac{\pi}{4} < artheta < rac{3\pi}{4}
ight). \end{aligned}$$

Таким образом, магнитные свойства полупроводника изменяют частоту поверхностной волны; возникает связанная геликон-спиновая волна, которая в отличие от поверхностного геликона распространяется не во всем интервале частот $\omega \ll \omega_H$, а в этом интервале для нее имеются области прозрачности. Связанные геликонспиновые волны различны по своей природе в структурах полупроводник-феррит и магнитный полупроводниквакуум.

В первой структуре взаимодействие магнитной подсистемы феррита и электронов проводимости полупроводника происходит в небольшой области вблизи границы y = 0. Во второй структуре взаимодействие магнитной и электронной подсистем осуществляется во всем объеме полупроводника — в полупространстве y < 0.

Несколько слов о магнитных полупроводниках, в которых для компонент тензора $\varepsilon_{ik}(\omega)$ выполняются соотношение (1) и условие

$$\varepsilon_{xx}\varepsilon_{zz} = \varepsilon_{xy}^2. \tag{26}$$

Прежде всего отметим, что при условии (26) поверхностные геликон-спиновые волны не существуют. Однако появляются "косые" псевдоповерхностной волны, если реализуются неравенства

$$\varepsilon_0 \omega_H^2 < \omega_0^2 < \frac{|\omega_H k_x k_z|}{\omega} c^2.$$
(27)

Дисперсионное соотношение для них описывается уравнением

$$1 + \mu - \mu_{xy} \operatorname{sign} k_x = -i \frac{\omega^2}{c^2} \times \frac{|\varepsilon_{xy}|(\mu - i\mu_{xy} \operatorname{sign} k_x)(1 - i\mu_{xy} \operatorname{sign} k_x)}{k_z |k_x|}.$$
 (28)

Решение уравнения (28) существует только при $k_x > 0$. Частота волны совпадает с частотой поверхностной волны Дэймана–Эшбаха [4]

$$\omega_{\rm DE} = \omega_g + \frac{\omega_M}{2},\tag{29}$$

а затухание имеет бесстолкновительный характер и обусловлено эффектами запаздывания в полупроводниковой среде:

$$\gamma = \frac{\omega_M^2 \omega_0^2}{|k_x k_z| c^2 |\omega_H| 16} \frac{\omega_{DE}}{\left(\omega_g + \frac{\omega_M}{4}\right)}.$$
(30)

Механизм его возникновения связан со следующими факторами. В полупроводнике одна из парциальных волн, а именно волна с компонентой волнового числа k_{y2} (Re k_{y1} , Im $k_{y2} < 0$), является объемной в области высоких частот $\omega > \nu$ при выполнении условий (26) и (27). Эта волна уносит часть волновой энергии от поверхности в глубь проводящей среды. Аналогичный эффект был предсказан в работе [7], где рассматривалась структура ферродиэлектрик–полупроводник.

4. В этом разделе рассматривается возбуждение гибридных геликон-спиновых волн (20), (21) излучателем, расположенным на конечном расстоянии от плоской границы раздела двух сред — вакуума и ферромагнитного полупроводника. Поскольку нас интересуют волны магнитного типа (компоненты электрического поля в них малы), в качестве излучателя следует выбрать магнитный диполь. Диполь расположен в вакууме (y > 0) на расстоянии *a* от поверхности y = 0. Фактически все известные магнитные диполи являются таковыми и представляют собой рамку малых размеров по сравнению с длиной волны, по которой протекает ток $\mathbf{J}^{\nu}(\mathbf{r}, t)$. Этот ток можно записать в виде

$$\mathbf{J}^{(\nu)}(\mathbf{r},t) = \mathbf{j}_0 \delta(x) \delta(y-a) \delta(z) e^{-i\omega t}, \qquad (31)$$

$$\mathbf{j}_0 = (j_{0x}, j_{0y}, 0).$$
 (32)

Магнитный момент рассматриваемого диполя направлен вдоль оси *OZ*.

Система уравнений поля в вакууме имеет вид

$$\operatorname{rot}\mathbf{E} = 0, \quad \operatorname{rot}\mathbf{H} = \frac{4\pi}{c}\mathbf{J}^{(\nu)}; \quad \operatorname{div}\mathbf{H} = 0 \qquad (33)$$

и сводится к неоднородному волновому уравнению

$$\Delta \mathbf{H} = -\frac{3\pi}{c} \operatorname{rot} \mathbf{J}^{(\nu)}.$$
 (34)

Решение уравнения (34) представляет собой сумму двух слагаемых:

$$H_{i}^{(\nu)} = \int \int_{-\infty}^{\infty} dk_{x} dk_{z} A_{i}(k_{x}, k_{z}) e^{i(k_{x}x + k_{y0}y + k_{z}z - \omega t)}$$
$$- \frac{1}{2\pi^{2}} \int \int_{-\infty}^{\infty} \int dk_{x} dk_{y} dk_{z} e^{i[k_{x}x + k_{y}(y - a)y + k_{z}z - \omega t]}$$
$$\times \frac{F_{i}(\mathbf{k})}{k_{x}^{2} + k_{y}^{2} + k_{z}^{2}} \quad (i = x, y, z),$$
(35)

где $k_{y0} = ik_{\perp}, \, k_{\perp} = \sqrt{k_x^2 + k_z^2};$

$$F_x = \frac{ik_z}{c} j_{0y}, \ F_y = -\frac{ik_z}{c} j_{0x}, \ F_z = -\frac{i}{c} \left(k_x j_{0y} - k_y j_{0x} \right).$$
(36)

Первое слагаемое в (35) является решением однородного уравнения Лапласа, второе — решением неоднородного уравнения и определяет волны, распространяющиеся от источника. Во втором слагаемом в (35) при интегрировании по k_y основной вклад в интеграл дают полюса $k_y = ik_{\perp}$ при y > a и $k_y = -ik_{\perp}$ при y < a. (Полюса выбраны из условия затухания поля при $y = \pm \infty$). Компоненты вектора **А** связаны соотношением

$$A_x = \frac{k_x}{k_{y0}} A_y, \quad A_z = \frac{k_z}{k_{y0}} A_y.$$
 (37)

Из граничных условий при y = 0 можно выразить неизвестные коэффициенты $A_i(k_x, k_z)$ через заданные параметры диполя и определить поле электромагнитной волны, отраженной в вакуум H_i^{ref} (первое слагаемое в (35)). В общем виде эти выражения очень громоздки. Равный нулю определитель системы уравнений для A_i соответствует дисперсионному соотношению собственных поверхностных волн системы вакуум — ферромагнитный полупроводник (20), (21). Для этих волн $A_y(k_x, k_z)$ имеет вид

$$A_{y}(k_{x},k_{z}) = -\frac{i}{2\pi}e^{-k_{\perp a}}\frac{P(k_{x},k_{z})}{k_{\perp}^{2}-k_{\perp 0}^{2}},$$
 (38)

$$P(k_x, k_z) = P(k_\perp, \vartheta)$$

$$= \frac{i}{\cos \vartheta \sin^2 \vartheta k_\perp c \left[1 + (\mu - i \operatorname{sign} k_x \mu_{xy})\right]}$$

$$\times \left\{ -\mu(k_x j_{0y} + i k_\perp j_{0x}) \left[k_x^2 + \frac{\omega^2}{c^2} \varepsilon_{xy} \frac{\mu_{xy}}{\mu + i \operatorname{sign} k_x \mu_{xy}}\right] + \frac{\omega^2}{c^2} \varepsilon_{xy} k_x (\mu - i \operatorname{sign} k_x \mu_{xy}) (\mu_{xy} j_{0y} - j_{0x}) \right\}, \quad (39)$$
rge $k_{\perp 0}^2 = k_{z0}^2 / \cos^2 \vartheta.$

Физика и техника полупроводников, 2000, том 34, вып. 6

Вычисления поля $H_i^{(\text{ref})}(\mathbf{r})$ удобно проводить в цилиндрической системе координат (ρ, ϑ, y), где $x = \rho \sin \vartheta$ и $z = \rho \cos \vartheta$. Тогда поле $H_v^{(\text{ref})}(\mathbf{r})$ имеет вид

$$H_{y}^{(\text{ref})}(\mathbf{r},t) = -\frac{ie^{-i\omega t}}{2\pi} \int_{0}^{\infty} k_{\perp} dk_{\perp} \int_{0}^{2\pi} \frac{d\vartheta' P(k_{\perp,\vartheta'})}{k_{\perp}^{2} - k_{\perp0}^{2}(\vartheta')}$$
$$\times \exp\{-k_{\perp}(y+a) + ik_{\perp}\rho\cos(\vartheta'-\vartheta)\}. \quad (40)$$

В дальнейшем нас будут интересовать поля отраженной волны (40) в волноводной зоне, т.е. на расстояниях от излучателя, больших по сравнению с длиной волны. Основной вклад в интеграл по переменной k_{\perp} дают не малые значения k_{\perp} , такие, для которых $k_{\perp}\rho \ll 1$. Тогда для вычисления интеграла по ϑ' можно воспользоваться методом стационарной фазы. На интервале $[0, 2\pi]$ существуют две точки стационарной фазы: $\vartheta'_1 = \vartheta$ и $\vartheta'_2 = \vartheta + \pi$. Поле (40) можно записать как сумму двух слагаемых:

$$H_{y}^{(\text{ref})} = -i\sqrt{\frac{2}{\pi\rho}} \int_{0}^{\infty} \sqrt{k_{\perp}} dk_{\perp} e^{-k_{\perp}(y+a)} \\ \times \left\{ \frac{P_{1}(k_{\perp},\vartheta)}{k_{\perp}^{2} - k_{\perp 1}^{2}} e^{ik_{\perp}\rho - i\frac{\pi}{4}} + \frac{P_{2}(k_{\perp},\vartheta)}{k_{\perp}^{2} - k_{\perp 2}^{2}} e^{-ik_{\perp}\rho + i\frac{\pi}{4}} \right\}, \quad (41)$$

где $P_1 = P(\vartheta' = \vartheta), P_2 = P(\vartheta' = \vartheta + \pi),$ $k_{\perp 0}^2 = k_{\perp 0}^2(\vartheta' = \vartheta), k_{\perp 2}^2 = k_{\perp 2}^2 = k_{\perp 0}^2(\vartheta' = \vartheta + \pi).$ Подынтегральные функции в (41) имеют особенности полюса в точках $k_{\perp} = \pm k_{\perp 1,2}$ ($P_{1,2}(k_{\perp})\sqrt{k_{\perp}}$ — гладкие функции). Полюса $k_{\perp 1,2}$ находятся в первом и третьем квадрантах комплексной плоскости k_{\perp} . В интегралах (41) перейдем к интегрированию по контурам: в первом слагаемом этот контур состоит из полуоси ($0, \infty$), дуги с радиусом $R \to \infty$ и полуоси ($0, i\infty$), во втором — из полуоси ($0, \infty$), дуги с бесконечно большим радиусом и полуоси ($0, -i\infty$). Нетрудно увидеть, что в выражение для $H_y^{(ref)}$ основной вклад дает полюс, у которого $\operatorname{Re}k_{\perp} \gg \operatorname{Im}k_{\perp} > 0$, а интеграл по мнимой оси и дугам приводит к экспоненциально малым величинам. Для $H_y^{(ref)}(\rho, \vartheta, y)$ получим

$$H_{y}^{(\text{ref})}(\rho,\vartheta,y) = -\sqrt{\frac{\pi}{2\rho k_{\perp 1}}} e^{-k_{\perp 1}(y+a)+ik_{\perp 1\rho+i\pi/4}} \Phi(k_{\perp 1},\vartheta),$$
(42)

$$\Phi(k_{\perp 1}, \vartheta) = rac{k_{\perp 1}^2 [\omega_g - \omega \operatorname{sign} (\operatorname{sin} \vartheta)]}{\cos artheta \left[\left(\omega_g + rac{\omega_M}{2}
ight) - \omega \operatorname{sign} (\operatorname{sin} artheta)
ight] c}
onumber \ imes [\sin artheta j_{0y} + i j_{0x}].$$

Формула (42) описывает поле в вакууме, возникшее в результате возбуждения поверхностной волны магнитным диполем. Плотность потока энергии этой волны через цилиндрическую площадку $ds = \rho d\vartheta dy$ ($S_{\rho} = \frac{dW}{ds} = \mathbf{Sn}_{\perp}$, где $S = \frac{c}{4\pi} [\mathbf{E}\mathbf{H}^*]$ и $n_{\perp} = (\sin \vartheta, \cos \vartheta)$) равна

$$S_{\rho} = \frac{\omega}{4\pi k_{\perp 1}} |H_{y}|^{2} = \frac{\omega k_{\perp 1}^{2} e^{-2k_{\perp 1}(y+a)} (\sin^{2}\vartheta j_{0y}^{2} + j_{0x}^{2})}{\rho c^{2}c \cos^{2}\vartheta} \times \frac{[\omega_{g} - \omega \operatorname{sign} \sin \vartheta)]^{2}}{[\omega_{g} + \frac{\omega_{M}}{2} - \omega \operatorname{sign} (\sin \vartheta)]^{2}}.$$
(43)

Плотность наблюдаемого излучения является наибольшей, если диполь и приемник помещены на поверхности раздела сред. Таким образом, поверхностную гибридную волну (21)–(25) можно наблюдать, возбуждая ее с помощью магнитного диполя и поместив приемник на плоскости y = 0 в секторах углов: $\frac{\pi}{4} < \vartheta < \frac{3\pi}{4}$ в случаях (23) и (25) или $\frac{5\pi}{4} < \vartheta < \frac{7\pi}{4}$ в случаях (22) и (24).

Список литературы

- [1] Э.А. Нагаев. Физика магнитных полупроводников (М., Наука, 1979).
- [2] Э.А. Нагаев, В.В. Осипов, А.А. Самохвалов. УФН, 166 (6), 685 (1996).
- [3] Э.А. Нагаев. УФН, 168 (8), 917 (1997).
- [4] М.И. Каганов, Н.Б. Пустыльник, Т.И. Шалаева. УФН, 167 (2), 191 (1997).
- [5] Н.Н. Белецкий, А.А. Булгаков, С.И. Ханкина, В.М. Яковенко. Плазменные неустойчивости и нелинейные явления в полупроводниках (Киев, Наук. думка, 1984).
- [6] И.Н. Олейник, В.М. Яковенко. УФЖ, 26 (I), 19 (1981).
- [7] V.L. Falko, S.I. Khankina, V.M. Yakovenko. Low. Temp. Phys., 25 (2), 144 (1999); ΦΗΤ, 25 (2), 195 (1999).

Редактор В.В. Чалдышев

Surface magnetoplasma waves in a ferromagnetic semiconductor and exitation by a magnetic dipole

V.L. Falko, S.I. Khankina, V.M. Yakovenko

A.Ya. Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of the Ukraine, 310085 Kharkov, the Ukraine

Abstract Electromagnetic eigen waves are investigated at an interface between vacuum and a ferromagnetic semiconductor. Dispersion relations and existence regions are found. A possibility of their excitation by a magnetic dipole placed above the interface is shown. The fields and energy flux density of surface waves in vacuum are determined.