Влияние диффузионной длины и поверхностной рекомбинации на поляризационную квантовую эффективность анизотропных кристаллов

© Г.А. Медведкин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 13 октября 1999 г. Принята к печати 22 ноября 1999 г.)

Получены формулы и проведен численный анализ зависимостей поляризационной квантовой эффективности Q_p и поляризационной разности фототоков Δi однородного анизотропного кристалла от диффузионной длины L и скорости поверхностной рекомбинации s_1 . Поляризационная фотопроводимость рассмотрена в области слабого и сильного оптического поглощения. Показано, что $Q_p(L)$ и $Q_p(s_1)$ в этих спектральных областях ведут себя противоположным образом: снижаются при малых коэффициентах поглощения α и растут при больших α . Рассмотрены предельные случаи нулевой, малой и высокой скорости поверхностной рекомбинации для $Q_p(L)$. Зависимости проанализированы на основе типичных параметров тройных алмазоподобных полупроводников II–IV–V₂.

1. Введение

Анизотропные кристаллы, обладающие высокой фоточувствительностью, служат основой оптических датчиков поляризованного излучения и представляют интерес одновременно как поляризационно-оптические, так и фотоэлектрические полупроводниковые объекты с индивидуальными, но взаимосвязанными особенностями. При разработке приборов поляризационной оптики и поляризационной оптоэлектроники в общем случае важна высокая поляризационная фоточувствительность $\Pi_i = P_i S_i$, где P_i — коэффициент фотоплеохроизма, S_i — токовая чувствительность. В процессе фундаментальных исследований анизотропных кристаллов с успехом используются также другие характеристики — поляризационная квантовая эффективность $Q_p = |\Delta n_{\parallel} - \Delta n_{\perp}| / N_{\rm ph}$ ($N_{\rm ph}$ — число фотонов, $\Delta n_{\parallel,\perp}$ концентрации фотоносителей) и поляризацонная разность фототоков $\Delta i = (i_{\parallel} - i_{\perp}).$ (Здесь и далее индексы ∥,⊥ относятся соответственно к поляризации Е || с и Е \perp с, Е — вектор электрического поля волны, с — оптическая ось кристалла). Электрические и фотоэлектрические свойства анизотропных полупроводниковых кристаллов подвержены сильному влиянию всех характеристических электронных параметров материала, и в первую очередь таких, как диффузионная длина неосновных носителей заряда L, скорость поверхностной рекомбинации s и время жизни электроннодырочных пар τ . В настоящей статье с помощью феноменологического подхода [1], развитого для изучения анизотропных полупроводников [2], получены и проанализированы зависимости поляризационной квантовой эффективности от параметров L и sт. Вопросы, связанные с поляризационной фотопроводимостью и освещенные далее, ранее в литературе не рассматривались [3,4].

Поляризационная фотопроводимость

Пусть линейно-поляризованное излучение при нормальном падении возбуждает объемную фотопроводимость в однородном ориентированном кристалле. Предположим, что в объеме кристалла выполняется условие линейной рекомбинации, а поверхностная рекомбинация отсутствует, s = 0. Если глубина поглощения света $1/lpha_{\parallel,\perp}$ ($lpha_{\parallel,\perp}$ — коэффициенты поглощения) будет меньше толщины *d* образца, то независимо от поляризации излучения в объеме полупроводника будут генерироваться эквивалентные концентрации свободных неравновесных носителей заряда. Различное пространственное распределение этих концентраций и темпа рекомбинации носителей не будет в этих условиях вызывать поляризационной фотопроводимости. Однако для тонких кристаллов при условии $d < (1/\alpha_{\perp} + L)$ и положительном дихроизме, $\alpha_{\parallel} > \alpha_{\perp}$, объемная фотопроводимость может стать анизотропной. В последнем случае скажется различие в пространственном распределении носителей заряда. Воспользуемся общим решением уравнения непрерывности, включающего генерационный, рекомбинационный и диффузионный члены аналогично [5]. Запишем поляризационную разность фототоков в виде

$$\Delta i = \Phi_1 \left\{ \frac{A_\perp}{(\alpha_\perp L)^2} (1 - e^{-\alpha_\perp d}) - \frac{A_\parallel}{(\alpha_\parallel L)^2} (1 - e^{-\alpha_\parallel d}) + \frac{LB}{L + s\tau} \left[A_\parallel - A_\perp + \frac{s\tau}{L^2} \left(\frac{A_\parallel}{\alpha_\parallel} - \frac{A_\perp}{\alpha_\perp} \right) \right] \right\}, \quad (1)$$

где

$$\Phi_1 = \beta \gamma \frac{e}{\hbar \omega} (1 - R) \Phi_0 \tau, \ A = \frac{(\alpha L)^2}{(\alpha L)^2 - 1}, \ B = (1 - e^{-d/L}).$$

Диффузионная длина в тройных алмазоподобных полупроводниках обычно мала, $L \leq 1$ мкм, поэтому в выра-

Рис. 1. Поляризационная квантовая эффективность, нормированная на максимальное значение, Q_p/Q_p^{max} в области слабого оптического поглощения в зависимости от диффузионной длины для случаев малой (*a*) и большой (*b*) скорости поверхностной рекомбинации. Толщина кристалла *d* указана у кривых.

жении (1) слагаемое в квадратных скобках отрицательно, оно уменьшает поляризационную разность фототоков или даже может изменить ее знак. Этот диффузионнорекомбинационный член играет важнейшую роль во всех анизотропных фотоэлектрических явлениях, поскольку отвечает за знак и амплитуду поляризационной квантовой эффективности. Рассмотрим теперь предельные случаи.

2.1. Поляризационная квантовая эффективность при слабом оптическом поглощении

В области малого коэффициента поглощения $\alpha d < 1$ и $\alpha L \ll 1$. В этом случае $1 - e^{-\alpha d} \approx \alpha d$, а $e^{-d/L} \approx 0$, так как $d \gg L$, и фототок для каждой из поляризаций (**E** || **c** и **E** \perp **c**) будет иметь следующий вид:

$$i = \frac{\beta \gamma e(1-R)\Phi_0 \tau}{\hbar \omega} \left(\alpha d - \frac{s_1 \alpha L}{1+s_1} \right), \tag{2}$$

где $s_1 = s\tau/L$ — безразмерная скорость поверхностной рекомбинации. С учетом стандартного выражения для поляризационной квантовой эффективности получаем

$$Q_p = \frac{\beta \gamma e(1-R)\tau}{\hbar\omega} \left| \left(d - \frac{s_1 L}{1+s_1} \right) \Delta \alpha \right|.$$
(3)

В области малого коэффициента поглощения поляризационная квантовая эффективность прямо пропорциональна абсолютной величине дихроизма $\Delta \alpha = (\alpha_{\parallel} - \alpha_{\perp})$ и линейно растет с *d*. Рекомбинационный член уменьшает амплитуду Q_p . Зависимость от диффузионной длины при больших *L* следует линейному закону согласно (3). Если поверхностная рекомбинация отсутствует, поляризационная квантовая эффективность не зависит от *L*. На рис. 1 приведены зависимости $Q_p(L)$ для двух случаев ненулевой поверхностной рекомбинации — малой, $s_1 = 1$, и большой, $s_1 \gg 1$. При построении кривых использованы параметры и диапазоны их изменения, характерные для тройных полупроводников II–IV–V₂ [3,4]. Сравнение рис. 1, *а* и 1, *b* показывает, что более сильный спад $Q_p(L)$ происходит при повышенной скорости поверхностной рекомбинации. Однако общее снижение амплитуды Q_p для образцов с реально используемыми толщинами *d* относительно невелик и составляет 10–20%.

Проанализируем теперь собственно зависимость поляризационной эффективности от безразмерной скорости поверхностной рекомбинации $s_1 = s\tau/L$. Заметим, что величина $s\tau/L$ выражает отношение времени жизни в объеме кристалла τ ко времени жизни на поверхности. Согласно (3), зависимость от s_1 более сложная, чем от *d* и *L*. На рис. 2 представлена нормированная на

Рис. 2. Изменение поляризационной квантовой эффективности объемной фотопроводимости анизотропного кристалла в зависимости от безразмерной скорости поверхностной рекомбинации. Диффузионная длина L = 1 мкм, толщина кристалла *d* указана у кривых.

Физика и техника полупроводников, 2000, том 34, вып. 5

максимум Q_p^{max} величина Q_p как функция s_1 . Видно, что с ростом скорости поверхностной рекомбинации величина Q_p спадает наиболее быстро для тонких кристаллов. При этом абсолютный спад для всех реальных образцов $(d \ge 10 \text{ мкм})$ небольшой, так же как и сама величина Q_p для объемной фотопроводимости. Приведенные на рис. 2 кривые показывают, что спад Q_p на 10% происходит для тонких образцов, если скорость поверхностной рекомбинации возрастает в 1000 раз.

Таким образом, в области слабого поглощения поляризационная квантовая эффективность слабо уменьшается с ростом скорости рекомбинации на поверхности и увеличением диффузионной длины носителей заряда. Скорость поверхностной рекомбинации в некоторых спектральных областях, где $\alpha d > 1$, может оказать решающее влияние на повышение амплитуды Q_p, поэтому при проведении эксперимента необходимо знать уровень реальной величины s₁ для правильной оценки силы поляризационно-оптических переходов при энергиях больше ширины запрещенной зоны ($\hbar \omega \ge E_g$), получаемой из фотоэлектрических измерений. Сделаем также важное замечание относительно необходимости такого учета в случае явления так называемой "брюстеровской анизотропии" в изотропных полупроводниках (при наклонном падении светового луча), что важно для получения верной оценки максимальной чувствительности поляризационных фотоприборов.

2.2. Поляризационная квантовая эффективность при сильном оптическом поглощении

В области средних и больших значений коэффициента оптического поглощения, когда $\alpha d > 1$ и $\alpha L < 1$, фототок принимает вид

$$i = \frac{\beta \gamma (1-R) \Phi_0 \tau}{\hbar \omega} \left(1 - \frac{\alpha L + s_1}{1 + s_1} \alpha L \right). \tag{4}$$

При отсутствии поверхностной рекомбинации, $s_1 = 0$, выражение для поляризационной квантовой эффективности записывается следующим образом:

$$Q_p = \frac{\beta \gamma (1-R)\tau}{\hbar \omega} \left| \alpha_{\parallel}^2 - \alpha_{\perp}^2 \right| L^2.$$
 (5)

Если скорость поверхностной рекомбинации будет равна или выше скорости рекомбинации в объеме, то $s_1 > \alpha L$ и формулу (4) можно упростить. С учетом исходного выражения для поляризационной квантовой эффективности имеем

$$Q_p = \frac{\beta \gamma (1-R)\tau}{\hbar \omega} \frac{s_1 L}{1+s_1} |\Delta \alpha|.$$
 (6)

С ростом диффузионной длины поляризационная квантовая эффективность увеличивается по амплитуде (рис. 3). Кривая $Q_p(L)$ следует либо квадратичному закону (5) при отсутствии поверхностной рекомбинации, $s_1 = 0$, либо подчиняется линейному закону (6) при $s_1 > \alpha L$ или при $s_1 \gg 1$. В анизотропных полупроводниковых кристаллах с одинаковой L величина Q_p почти всегда оказывается выше для образцов с высокой скоростью по-

верхностной рекомбинации. Этот факт может быть объяснен следующим образом: чем больше разность в концентраций фотоносителей у поверхности $(\Delta n_{\parallel} - \Delta n_{\perp})$, тем выше амплитуда Q_p .

Зависимость Q_p от s_1 — нелинейная (рис. 4), и с ростом скорости рекомбинации на поверхности амплитуда Q_p достигает почти 70%. Как видно из рис. 4, кривые являются как бы зеркальным отражением зависимости $P_i(s_1)$ (ср. с рис. 4 в работе [5]). Это свойство поляризационных коэффициентов определяется одним и тем же рекомбинационным членом $s_1(1 + s_1)$, который присутствует в обоих выражениях — как для поляризационной квантовой эффективности, так и для коэффициента фотоплеохроизма [5].

Рис. 3. Зависимость поляризационной квантновой эффективности от диффузионной длины в области средних и больших значений коэффициента оптического поглощения. R = 0.26, $K = \beta \gamma \tau / \hbar \omega$.

Рис. 4. Зависимость поляризационной квантовой эффективности от скорости поверхностной рекомбинации в области средних и больших значений коэффициента оптического поглощения. $R = 0.26, K = \beta \gamma \tau / \hbar \omega$.

3. Заключение

Полученные зависимости показывают безусловную важность учета характеристических полупроводниковых параметров анизотропных кристаллов, используемых в поляризационной оптоэлектронике. Диффузионная длина неосновных носителей заряда и скорость рекомбинации на поверхности фотопроводника изменяют амплитуду поляризационной квантовой эффективности в очень больших пределах в зависимости от знака оптического дихроизма анизотропного кристалла и спектрального диапазона возбуждения. Кроме этого, геометрия освещения и расположение электрических контактов на освещаемой и теневой поверхностях кристаллической пластины могут приводить к дополнительному пространственному перераспределению генерированных фотоносителей для поляризаций Е || с и Е \perp с, что также существенно влияет на знак и амплитуду поляризационной квантовой эффективности.

Список литературы

- [1] С.М. Рывкин. Фотоэлектрические явления в полупроводниках (М., Физматгиз, 1963).
- [2] Г.А. Медведкин. Автореф. докт. дис. (СПб., ФТИ им. А.Ф. Иоффе РАН, 1993).
- [3] Г.А. Медведкин, Ю.В. Рудь, М.А. Таиров. Полупроводниковые кристаллы фотоприемников линейно-поляризованного излучения (Ташкент, Изд-во "ФАН" АН Узбекистана, 1992).
- [4] G.A. Medvedkin, Yu.V. Rud, M.A. Tairov. Phys. St. Sol. (a). 115, 11 (1989).
- [5] Г.А. Медведкин. ФТП, 34, 533 (2000).

Редактор Л.В. Шаронова

Effect of the diffusion length and the surface recombination rate on the polarization quantum efficiency of anisotropic crystals

G.A. Medvedkin

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia

Abstract Formulas have been derived and a numerical analysis of a polarization quantum efficiency Q_p and a polarization current difference Δi as a function of the diffusion length L and the surface recombination rate s_1 was performed for a homogeneous anisotropic crystal. The polarization photoconductivity was considered in the range of both weak and strong optical absorption. The $Q_p(L)$ and $Q_p(s_1)$ behaviour is different within the spectral ranges: they decrease at small absorption coefficient values α and increase at large ones. In the limit of the zero, low and high rate of surface recombination the $Q_p(L)$ data are presented too. The dependences were analysed by using typical parameters of ternary diamond-like semiconductors II–IV–V₂.