Стимулированное углеродом увеличение концентрации дивакансий галлия в полуизолирующих нелегированных кристаллах арсенида галлия

© К.Д. Глинчук[¶], Н.М. Литовченко, А.В. Прохорович, О.Н. Стрильчук

Институт физики полупроводников Национальной академии наук Украины, 03028 Киев, Украина

(Получена 19 октября 1999 г. Принята к печати 28 октября 1999 г.)

Показано, что увеличение содержания углерода в полуизолирующих нелегированных кристаллах арсенида галлия приводит к существенному возрастанию в них концентрации дивакансий галлия. Отмеченное, наиболее вероятно, связано с заполнением атомами углерода вакансий мышьяка, входящих в состав комплекса дивакансия мышьяка — дивакансия галлия.

1. Введение

Как известно, в полуизолирующих специально не легированных кристаллах GaAs (далее ПИН GaAs) при 4.2 К наблюдается полоса люминесценции с положением максимума излучения 1.5099 эВ [1]. Эта полоса обусловлена излучательной аннигиляцией экситонов X, связанных на дефектах d — дивакансиях галлия $(V_{\text{Ga}})_2$ [1].¹ В настоящей работе мы покажем, что концентрация дивакансий галлия, входящих в состав указанных (d, X) центров, существенно увеличивается при возрастании содержания углерода в кристаллах ПИН GaAs, и рассмотрим возможную модель, объясняющую наблюдаемое явление.²

2. Методика

Опыты проведены на специально не легированных полуизолирующих кристаллах GaAs с известной (определенной с точностью $\pm 30\%$ по спектрам низкотемпературной фотолюминесценции, подробно о методе см., например, в [7]) концентрацией атомов углерода $N_{\rm C} = 2 \cdot 10^{15} \div 3 \cdot 10^{16} \, {\rm cm}^{-3}$. Кристаллы были выращены методом Чохральского в атмосфере аргона (давление 3 атм) из-под слоя флюса B_2O_3 в условиях, близких к стехиометрическим. Их удельное сопротивление ρ ($\rho \approx 10^8 \, {\rm Cm} \cdot {\rm cm}$ 300 К и $\rho \rightarrow \infty$ при 4.2 ÷ 200 K) определялось термической ионизацией глубоких доноров *EL2*, частично скомпенсированных атомами углерода (электрофизические свойства исследуемых кристаллов подробно описаны в [8]).

Люминесценция возбуждалась сильно поглощаемым излучением He–Ne-лазера (энергия квантов 1.96 эB, ко-эффициент поглощения света $k = 4 \cdot 10^4 \text{ см}^{-1}$, а эффек-

тивная глубина его проникновения 1/k = 0.25 мкм, интенсивность освещения $L = 10^{18} \div 10^{21}$ кв./(см² · с)). Перед измерением люминесценции поверхность кристаллов обрабатывалась в смеси $3 \text{ H}_2\text{SO}_4 : 1 \text{ H}_2\text{O}_2 : 1 \text{ H}_2\text{O}$. Концентрация генерируемых лазером избыточных электронов δn , а дырок δp ; величины δn и δp определялись скоростью объемной рекомбинации неравновесных носителей тока на глубоких центрах и мало отличались (не более чем на $\pm 20\%$) в кристаллах с различным содержанием углерода, т.е. δn , $\delta p \neq \varphi(N_{\rm C})$ [8].

Изучались при 4.2 К спектры экситонной люминесценции кристаллов ПИН GaAs с различным содержанием углерода (их вид, т.е. соотношение между интенсивностями различных полос излучения в нем, практически не зависит от интенсивности освещения L). Для получения спектров использовался монохроматор МДР-23 (с разрешением не хуже 0.2 мэВ), регистрация сигнала осуществлялась охлаждаемым ФЭУ-62. В них, помимо традиционных полос люминесценции (в частности, обусловленной аннигиляцией свободных экситонов, максимум ее излучения при $h\nu_m = 1.5156$ эВ, ее интенсивность IFE (точность определения величины $I_{FE}\pm 25\%$), очевидно, $I_{FE}\sim \delta n\delta p$ [9]), наблюдалась также нетрадиционная полоса люминесценции с положением максимума излучения $h\nu_m = 1.5099$ эВ, обусловленная, как отмечалось выше, излучательной аннигиляцией связанных на дивакансиях галлия экситонов (ее интенсивность I_{dX} (точность определения величины $I_{dX} \pm 25\%$), несомненно, $I_{dX} \sim N_d \delta n \delta p$ [9]³) (см. рис. 1). Измерение интенсивности этой нетрадиционной полосы люминесценции I_{dx} либо отношения интенсивностей нетрадиционной и обусловленной аннигиляцией свободных экситонов полос люминесценции I_{dX}/I_{FE} позволило определить (с точностью ±50%) концентрацию дивакансий галлия

[¶] E-mail: glinchuk@class.semicond.kiev.ua

¹ Дивакансии галлия создают глубокие акцепторные центры с энергией ионизации $\varepsilon_a = 68$ эВ [1].

² Атомы углерода преимущественно занимают узлы в мышьяковой подрешетке арсенида галлия (концентрации атомов углерода в узлах галлиевой подрешетки арсенида галлия и в междоузлиях крайне низки) [2-6]. Замещающие мышьяк атомы углерода являются мелкими акцепторами с энергией ионизации $\varepsilon_a = 26 \text{ мэВ}$ [7]. Их диффузия происходит по вакансиям мышьяка [3].

³ Приведенное соотношение для интенсивности I_{dX} справедливо, если, во-первых, лишь небольшое число свободных экситонов связывается с дивакансиями галлия, во-вторых, дивакансии галлия в основном нейтральны, т. е. заполнены дырками [9]. Эти предположения строго выполнялись на опыте. В частности, при T = 4.2 K и $L = 10^{18} \div 10^{21} \text{ kB./(см}^2 \cdot \text{ с})$ дивакансии галлия действительно были практически полностью заполнены дырками, о чем несомненно свидетельствует наблюдаемая на опыте независимость отношения I_{dX}/I_{FE} от *L*.

Рис. 1. Спектр экситонной люминесценции кристалла ПИН GaAs с концентрацией углерода $N_{\rm C} = 1.3 \cdot 10^{16} \,{\rm cm}^{-3}$ при 4.2 K. Линии FX, dX, A^0X и D^0X показывают полосы излучения, обусловленные аннигиляцией свободных и связанных на дивакансиях галлия, мелких акцепторных и мелких донорах экситонов соответственно [1]. Спектр записан при $L = 10^{19} \,{\rm kB}/({\rm cm}^2 \cdot {\rm c}).$

Рис. 2. Зависимость концентрации дивакансий галлия от содержания атомов углерода в кристаллах ПИН GaAs, полученная из соотношений $N_d \sim I_{dX}$ (1) и $N_d \sim I_{dX}/I_{FE}$ (2). Прямая линия — зависимость $N_d \sim N_C^2$; для удобства точность определения величин N_d и N_C показана лишь для отдельных кристаллов.

 N_d в исследуемых кристаллах: очевидно, $N_d \sim I_{dX}$, ибо $\delta n \delta p$ = const (см. выше), и $N_d \sim I_{dX}/I_{FE}$ (оба метода определения N_d давали практически одинаковые результаты, см. рис. 2).

3. Результаты и обсуждение

На рис. 2 приведена зависимость концентрации входящих в состав (d, X) центров дивакансий галлия от содержания атомов углерода в кристаллах ПИН GaAs. Как видно, увеличение содержания углерода приводит к существенному (сверхлинейному, $N_d \sim N_C^2$) повышению концентрации дивакансий галлия.

Из приведенных данных несомненно следует, что атомы углерода способствуют образованию дивакансий галлия. Отмеченное не может быть связано со смещением атомов галлия из их положения в узле решетки вследствие возмущающего действия на них атмов углерода. Действительно, ковалентный радиус атома углерода $R_{\rm C} = 0.77 \cdot 10^{-8}$ см существенно меньше ковалентного радиуса атома мышьяка $R_{\rm As} = 1.20 \cdot 10^{-8}$ см. Поэтому легирование арсенида галлия углеродом приводит лишь к относительно небольшому смещению атомов галлия (на расстояние $0.14 \cdot 10^{-8} \div 0.38 \cdot 10^{-8}$ см) к замещающим мышьяк соседним атомам углерода [2,4–6].

Наиболее вероятным процессом, объясняющим стимулированное углеродом увеличение концентрации дивакансий галлия, является следующий. При его рассмотрении мы принимаем во внимание то, что кристаллы арсенида галлия, помимо изолированных вакансий галлия и мышьяка, могут также содержать и различные их комплексы, в частности комплексы разноименных дивакансий ($V_{Ga}V_{As}$)₂ [1]. Тогда последовательное заполнение мигрирующими атомами углерода вакансий мышьяка, входящих в состав комплексов ($V_{Ga}V_{As}$)₂, приводит к заметной генерации во время роста кристалла сначала вакансий, а затем и дивакансий галлия (V_{Ga})₂. Очевидно, изменение концентрации последних при вариации содержания углерода происходит по закону $N_d \sim N_c^2$.

Резюмируя обсуждение экспериментальных зависимостей $N_d = \varphi(N_{\rm C})$, необходимо отметить следующее. Рассмотренное взаимодействие замещающих мышьяк атомов углерода и комплексов $(V_{\rm Ga}V_{\rm As})_2$, объясняющее стимулированное углеродом возрастание концентрации дивакансий галлия, приводит к генерации не изолированных дивакансий галлия, а связанных с замещающим мышьяк атомами углерода. Весьма вероятно, что свойства изолированных и связанных с атомами углерода дивакансий галлия мало отличаются.

4. Заключение

Атомы углерода стимулируют образование дивакансий галлия (повышение содержания углерода приводит к возрастанию их концентрации по закону $N_d \sim N_C^2$) в кристаллах ПИН GaAs. Отмеченное, наиболее вероятно,

связано с заполнением атомами углерода вакансий мышьяка, входящих в состав сложного комплекса $(V_{\rm Ga}V_{\rm As})_2$. Очевидно, для подтверждения приведенного объяснения наблюдаемой на опыте зависимости $N_d = \varphi(N_{\rm C})$ необходим теоретический расчет концентрации дивакансий галлия, создаваемых при взаимодействии замещающих мышьяк атомов углерода со сложными вакансионными комплексами $(V_{\rm Ga}V_{\rm As})_2$, и сравнение вычисленной величины N_d с экспериментально полученным значением N_d .

Список литературы

- [1] Чао Чень, В.А. Быковский, М.И. Тарасик. ФТП, **28**, 35 (1994).
- [2] L.M. Scolfaro, R. Pintanel, V.M. Gomes, J.R. Leite. Phys. Rev. B, 34, 7135 (1986).
- [3] B.T. Guningham, L.J. Guido, J.E. Baker. Appl. Phys. Lett., 55, 687 (1989).
- [4] I. Fujimoto, S. Nishine, T. Yamada. Japan J. Appl. Phys., 31, L296 (1992).
- [5] K.J. Chang, B.H. Cheong. Phys. Rev. B, 49, 17436 (1994).
- [6] T.M. Schmidt, P.M. Venezuela, M.J. Caldas, A. Fazzio. Appl. Phys. Lett., 66, 2715 (1995).
- [7] К.Д. Глинчук, Н.М. Литовченко, О.Н. Стрильчук, А.В. Прохорович. В сб.:Оптоэлектроника и полупроводниковая техника (Киев, Наук. думка, 1998) вып. 33, с. 204.
- [8] K.D. Glinchuk, N.M. Litovchenko, O.N. Strilchuk, A.V. Prokhorovich. Phys. St. Sol. (b), 213, 233 (1999).
- [9] T. Schmidt, K. Lischka. Phys. Rev. B, 45, 8989 (1992).

Редактор В.В. Чалдышев

Carbon-stimulated increase in the concentration of gallium divacancies in semi-insulating undoped GaAs crystals

K.D. Glinchuk, N.M. Litovchenko, A.V. Prokhorovich, O.N. Strilchuk

Institute of Semiconductor Physics, National Academy of Sciences of the Ukraine, 03028 Kiev, Ukraine

Abstract It has been shown that an increase in the carbon content in semi-insulating undoped GaAs crystals leads to a substantial rise in the concentration of gallium divacancies in them. The fact is connected with carbon impurity filling arsenic vacancies most probably involved in Ga divacancy-As divacancy complexes.