Структурные особенности и свойства пленок *a*-Si: H, полученных методом циклического осаждения

© В.П. Афанасьев, А.С. Гудовских, О.И. Коньков*, М.М. Казанин*, К.В. Коугия+, А.П. Сазанов, И.Н. Трапезникова*, Е.И. Теруков*

Санкт-Петербургский государственный электротехнический университет,

197022 Санкт-Петербург, Россия

* Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

⁺ Санкт-Петербургская государственная педиатрическая академия,

194100 Санкт-Петербург, Россия

(Получена 16 ноября 1999 г. Принята к печати 17 ноября 1999 г.)

Исследованы пленки аморфного гидрогенизированного кремния, полученные методом циклического осаждения с использованием промежуточного отжига в водородной плазме. Пленки *a*-Si:H, осажденные в оптимальных режимах, обладают фоточувствительностью (отношение проводимостей при освещении и в темноте достигает значений $\sigma_{\rm ph}/\sigma_{\rm d} \approx 10^7$ при освещенности 20 мВт/см² в видимой области спектра), а значения оптической ширины запрещенной зоны (E_g) и энергии активации (E_a) составляют 1.85 и 0.91 эВ соответственно. Микроскопические исследования выявили четко выраженную слоистую структуру пленок *a*-Si:H и наличие нанокристаллических включений в матрице аморфной фазы.

Введение

Аморфный гидрогенизированный кремний (*a*-Si:H) по сравнению с другими аморфными полупроводниками обладает такими свойствами, как высокая фотопроводимость, большой коэффициент поглощения, возможность эффективного легирования. Однако, несмотря на более чем двадцатилетнюю историю использования *a*-Si:H, вопросы получения качественного материала с высокой воспроизводимостью и стабильностью параметров до сих пор не решены.

Одним из путей получения высококачественных *i*-слоев *a*-Si: Н при сравнительно низких температурах подложки является использование прерывистого (циклического) режима нанесения, при котором цикл плазмохимического осаждения из моносилана слоя *a*-Si: Н, толщиной 1-10 нм, чередуется с его "отжигом" в водородной плазме [1]. Отмечается, что оптимизация отношения времени осаждения и времени отжига позволяет существенно повысить фоточувствительность *i*-слоев. Однако при уменьшении этого соотношения ниже некоторой критической величины наблюдается увеличение объемной доли микрокристаллической фазы кремния и снижение фоточувствительности [1–4].

Авторами был разработан и впоследствии модернизирован технологический комплекс, позволяющий варьировать циклические режимы плазмохимического осаждения (ПХО) в достаточно широких пределах [5]. Размещение высокочастотной (ВЧ) системы ПХО на боковой поверхности цилиндрической вакуумной камеры, а подложек — на вращающемся внутри камеры барабане– подложкодержателе обеспечило возможность нанесения материала тонкими слоями, подвергающимися послойному термическому отжигу в водородной плазме и позволило получить высокую равномерность пленок *a*-Si: H по толщине.

Технология получения и методика измерений

Нелегированные пленки *a*-Si: Н наносились на ситалловые, кварцевые и кремниевые подложки методом циклического ПХО в диодной ВЧ системе (13.56 МГц). При этом использовались технологические режимы, соответствующие оптимальным для циклического осаждения в постоянной газовой смеси (80%Ar + 20%SiH₄) [5]: температура подложки — 250°C, мощность ВЧ разряда — 40 Вт, скорость вращения барабана-подложкодержателя — 4 об/мин и давление газовой смеси — 25 Па.

В процессе оптимизации циклического осаждения осуществлялось изменение состава газовой смеси с помощью натекателей, управляемых реле времени, которые задавали времена осаждения (t_{dep}) и термообработки (t_{tr}) в водороде, причем варьировалось соотношение времени осаждения и времени отжига. Время отжига было зафиксировано и составляло 2 мин. Толщина слоя, осаждаемого за один цикл, варировалась путем изменения времени осаждения от 1 до 4 мин. При этом времена установления состава газовой смеси составляли несколько десятков секунд, т.е. были соизмеримы с временами осаждения и отжига. Это создавало принципиально неравновесные условия роста пленок.

Толщина, коэффициент поглощения и показатель преломления пленок *a*-Si:H, нанесенных на кварцевые подложки, определялись из спектров пропускания образцов по методике, изложенной в работе [6]. Методом Тауца по спектральной зависимости коэффициента поглощения определялось значение оптической ширины запрещенной зоны.

Для определения темновой проводимости σ_d и фотопроводимости σ_{ph} пленок *a*-Si: Н на ситалловых подложках использовались алюминиевые электроды с зазором 0.2 мм и коэффициентом формы 0.018. Так как толщины осаждаемых пленок различались между собой и составляли 0.47-0.63 мкм, с целью устранения влияния толщины на фоточувствительность пленок *a*-Si: Н измерения фотопроводимости проводилось при длинах волн 365 и 436 нм, на которых преимущественное поглощение фотонов происходит в приповерхностной области порядка 100 нм. Измерения осуществлялись на зондовой установке, которая позволяла проводить фотоэлектрические исследования в двух режимах освещения: на длинах волн 365, 436 нм с интенсивностью 0.17 мBT/см² и в видимой области спектра с интенсивностью 20 мBT/см².

По температурным зависимостям темновой проводимости находилось значение энергии активации.

В результате обработки спектров инфракрасного (ИК) поглощения пленок *a*-Si:H, осажденных на кремниевые подложки, определялись концентрации и тип связей водорода.

Структурные особенности пленок изучались с помощью растровой и просвечивающей электронной микроскопии.

Экспериментальные результаты и обсуждение

Зависимости темновой σ_d и фотопроводимости σ_{ph} , а также их отношения σ_{ph}/σ_d от толщины слоя, осажденного за один цикл, представлены на рис. 1. Видно, что с уменьшением толщины слоя фоточувствительность σ_{ph}/σ_d возрастает, причем этот рост фоточувствительности связан с уменьшением темновой проводимости. Такое поведение темновой проводимости пленок *a*-Si:H, полученных нами методом циклического осаждения, является их отличительной особенностью. Другие авторы, наоборот, отмечают, что с уменьшением толщины слоя, осаждаемого за цикл, темновая проводимость пленок *a*-Si:H или возрастает [2], или остается неизменной [1].

В работе [7] мы высказали предположение, что наблюдаемое поведение темновой проводимости связано с тем, что осаждение, происходящее в условиях переходного процесса, приводит к неравномерному распределению водорода и, следовательно, к изменению ширины запрещенной зоны по глубине слоя, осаждаемого за один цикл. Получается слоистая варизонная структура, обладающая потенциальными барьерами на границе слоев, наличие которых, возможно, и приводит к уменьшению темновой проводимости за счет уменьшения эффективной площади пленки, обладающей большей проводимостью.

Подтверждением этому являются результаты растровой электронной микроскопии среза пленки *a*-Si: H, нанесенной в циклическом режиме (рис. 2, *a*). На фотографии четко видна слоистая структура пленки, причем толщины отдельных слоев соответствуют их толщине, осаждаемой за цикл. Светлые полосы, по-видимому, являются областями, возникающими в пленке при обработке в водородной плазме, и наиболее обогащены водородом.

Рис. 1. Зависимости темновой проводимости σ_d и фотопроводимости σ_{ph} пленок *a*-Si:H, а также их отношения σ_{ph}/σ_d от толщины слоя *L*, осаждаемого за цикл. Кривые: $1, 2 - \sigma_{ph}$; $3, 4 - \sigma_{ph}/\sigma_d$; штриховая — σ_d . Освещение пленок производилось на длинах волн λ , нм: 1, 3 - 436; 2, 4 - 365. Вертикальная прямая соответствует режиму непрерывного осаждения.

Рис. 2. Фотографии по методам растровой (*a*) и просвечивающей (*b*) электронной микроскопии пленки *a*-Si:H (толщина слоя, осаждаемого за цикл, 16 нм).

При дальнейшем уменьшении толщины слоя *L*, осаждаемого за цикл, наблюдается увеличение темновой проводимости, что может быть обусловлено возрастанием доли нанокристаллической фазы в пленке *a*-Si:H. Образование нанокристаллических включений в пленках *a*-Si:Н подтверждается результатами просвечивающей электронной микроскопии (рис. 2, *b*). На фотографии отчетливо видны кристаллические включения, размеры которых составлют несколько десятков нанометров.

Для выяснения процессов, протекающих при циклическом осаждении, представляет интерес исследование таких характеристик пленок a-Si:H, как содержание водорода, отношение долей SiH к SiH₂ (рис. 3), оптическая ширина запрещенной зоны и энергия активации (рис. 4) в зависимости от толщины слоя L, осаждаемой за один цикл. Видно, что с уменьшением толщины пленки наблюдается возрастание концентрации водорода, сопровождающееся увеличением оптической ширины запрещенной зоны и энергии активации. При этом возрастает доля Далее наблюдается спад концентрации связей SiH₂. водорода, уменьшение оптической ширины запрещенной зоны, энергии активации и доли связей SiH₂. Наличие этого спада, на наш взгляд, является дополнительным доказательством возрастания доли нанокристаллической

Рис. 3. Усредненные значения содержания водорода $C_{\rm H}$ и отношения долей SiH/SiH₂ в пленках *a*-Si: H в зависимости от толщины слоя *L*, осаждаемого за цикл. Вертикальная прямая — то же, что на рис. 1.

Рис. 4. Зависимости оптической ширины запрещенной зоны E_g и энергии активации проводимости E_a пленок *a*-Si: H от толщины слоя *L*, осаждаемого за цикл. Вертикальная прямая — то же, что на рис. 1.

Рис. 5. Спектры относительной фотопроводимости пленок *a*-Si: H, осажденных: 1 — в непрерывном режиме и в циклическом режиме с толщинами слоев, осаждаемых за цикл L, нм: 2 - 26, 3 - 16.

фазы при уменьшении толщины пленки, подвергающейся обработке в плазме водорода. Уменьшение соотношения SiH/SiH₂ с ростом концентрации водорода, согласно [8], может быть обусловлено тем, что водород в виде связей SiH₂ пассивирует поверхность нанокристаллов кремния.

Особенностью полученных пленок *a*-Si: Н является наличие дуплетов в спектрах фотопроводимости, которые ранее наблюдались в работе [9]. Это видно из спектров относительной фотопроводимости пленок *a*-Si: H, полученных циклическим методом с разными толщинами слоев, осаждаемых за один цикл (рис. 5). Мы предполагаем, что возникновение дуплетов связано с варизонной структурой пленки. Это предположение подтверждается тем, что расстояние между пиками составляет 0.1–0.3 эВ, которое соответствует флуктуациям оптической ширины запрещенной зоны за счет неравномерного распределения водорода по толщине пленок.

Заключение

Исследование структурных и электрофизических характеристик пленок *a*-Si: Н показало, что использование промежуточного отжига в водородной плазме в процессе циклического осаждения приводит к обогащению их водородом, что сопровождается увеличением оптической ширины запрещенной зоны и энергии активации темновой проводимости. Распределение водорода по толщине пленки *a*-Si: Н происходит не однородно, что в свою очередь приводит к варизонной структуре пленки и к образованию потенциальных барьеров на границах слоев, подвергшихся отжигу.

В то же время с увеличением содержания водорода в пленках происходит образование нанокристаллической фазы кремния. При уменьшении толщины пленки, подвергающейся обработке в водородной плазме, доля нанокристаллической фазы растет. Зависимости величин σ_d , E_g , E_a , C_H и отношения SiH/SiH₂ от толщины слоя, осаждаемого за цикл, могут быть описаны на основе двух конкурирующих процессов: обогащения пленок водородом, который пассивирует оборванные связи, и образования нанокристаллов. На основании полученных результатов можно определить оптимальные толщины слоев (14–16 нм), подвергаемых обработке в водородной плазме, которым соответствуют максимальные значения фоточувствительности, оптической ширины запрещенной зоны и энергии активации темновой проводимости пленок *a*-Si:H.

Авторы выражают благодарность А.А. Ситниковой за проведенные электронно-микроскопические исследования.

Работа поддержана грантами Copernicus IC15-CT98-0819 (ТІМОС) и INTAS № 97-1910.

Список литературы

- S. Okamoto, Y. Hishikawa, S. Tsuge et al. Jpn. J. Appl. Phys., 33 (4A), 1773 (1994).
- [2] A. Asano. Appl. Phys. Lett., 56 (6), 533 (1990).
- [3] M. Otobe, S. Oda. Jpn. J. Appl. Phys., **31** (6B), 1948 (1992).
- [4] S. Koynov. Jpn. J. Appl. Phys., **33** (8), 4534 (1994).
- [5] В.П. Афанасьев, А.А. Лянгузов, А.П. Сазанов. Петербург. журн. электроники, № 2, 7 (1995).
- [6] R. Swanepoel. J. Phys. E: Sci. Instrum., 16, 1214 (1983).
- [7] В.П. Афанасьев, А.С. Гудовских, О.И. Коньков, М.М. Казанин, К.В. Коугия, А.П. Сазанов, И.А. Трапезникова, Е.И. Теруков. *Матер. Х межд. симп. "Тонкие пленки в электронике"*, Ярославль, 20–25 сентября 1999 г. (Ярославль, Ин-т микроэлектроники РАН, 1999) с. 150.
- [8] А.А. Андреев, А.В. Андрианов, Б.Я. Авербух, Р. Шавлянов. ФТТ, 38(1) 19 (1996).
- [9] О.А. Голикова, М.М. Казанин. ФТП, 38 (1), 110 (1999).

Редактор Т.А. Полянская

Structure features and properties of *a*-Si: H films, fabricated by a cyclic method of deposition

V.P. Afanasyev, A.S. Gudovskikh, O.I. Kon'kov*, M.M. Kazanin*, K.B. Koughia⁺, A.P. Sazanov, I.N. Trapeznikova*, E.I. Terukov*

Saint Petersburg State Electrotechnical University "LETI", 197376 St. Petersburg, Russia * loffe Physicotechnical Institute, Russia Academy of Sciences, 194021 St. Petersburg, Russia + Saint Petersburg State Paediatrical Academy, 194100 St. Petersburg, Russia

Abstract Films of amorphous hydrogenated silicon fabricated by a cyclic method of deposition followed by an additional annealing in the hydrogen plasma have been investigated. Optimised *a*-Si:H films had the high photosensitivity $(\sigma_{\rm ph}/\sigma_{\rm d} \approx 10^7)$ under the illumination by 20 mW/cm² within the visible spectrum area, the values of the optical band gap (E_g) and the activation enegry E_a) being 1.85 eV and 0.91 eV, respectively. The microscopy study revealed a pronounced layer structure of *a*-Si:H films and nanocrystalline interstitials in the amorphous phase matrix.