Зависимость энергетического спектра механически напряженной сверхрешетки ZnSe/ZnS от концентрации носителей

© Р.М. Пелещак, Б.А. Лукиянец

Дрогобычский государственный педагогический университет, 293720 Дрогобыч, Украина

(Получена 27 октября 1999 г. Принята к печати 28 октября 1999 г.)

В рамках модели самосогласованной электрон-деформационной связи показано, что вблизи гетероконтакта механически напряженной сверхрешетки ZnSe/ZnS внутри основной квантовой ямы (ZnSe) и над основным барьером (ZnS) возникают дополнительные периодические локальные электрон-деформационные ямы и барьеры. Установлено, что при толщине наращиваемого слоя ZnSe от 10 до 20 Å энергия основного состояния электрона E_{0c} монотонно уменьшается с увеличением концентрации электронов проводимости n_c , а при толщине, большей 20 Å, концентрационная зависимость $E_{0c} = f(n_c)$ имеет немонотонный характер с минимумом, который при увеличении толщины слоя смещается в сторону меньших концентраций n_c .

1. Введение

В современной микроэлектронике широко используются полупроводниковые гетероструктуры, в том числе гетероструктуры с механическими напряжениями [1,2]. Для получения гетеросистем, находящихся в механически напряженном состоянии, разработан целый ряд технологий (таких, например, как молекулярно-лучевая эпитаксия) [2–5]. Изучаются явления, связанные с деформированной областью гетеросистем, что дает возможность, с одной стороны, подавлять нежелательные явления, а с другой — использовать эти явления для разработки микроэлектронных устройств с заданными характеристиками.

Механико-деформационная модель, описывающая гетероструктуры с напряжениями, учитывает механические искажения, которые возникают в области контакта кристаллических систем вследствие несогласованности параметров решеток или вследствие флуктуаций толщины наращиваемого слоя или состава твердого раствора [3–7].

В действительности на напряженное состояние гетеросистемы влияет также взаимодействие механических деформаций решетки с электронами проводимости. Электрон-деформационное взаимодействие, которое существенно зависит от концентрации носителей, может быть учтено с помощью так называемой электрондеформационной модели [8]. Эта модель и будет использоваться в настоящей работе для описания напряженных состояний гетеросистем.

2. Теория

Рассмотрим сверхрешетку, слои которой содержат напряжения, возникающие вследствие рассогласования постоянных решетки или других кристаллографических характеристик контактирующих материалов. Как известно, подобная ситуация имеет место в случае гетероструктур ZnSe/ZnS [5,9].

Расчет энергетического спектра механически напряженной сверхрешетки с учетом электрон-деформационного взаимодействия основан на решении одномерного стационарного уравнения Шредингера

$$\begin{bmatrix} -\frac{\hbar^2}{2m_{\alpha}^{*\beta}} \frac{\partial^2}{\partial x^2} + V_{\alpha}^{\beta}(x, L_w, b, n_{\alpha}) \end{bmatrix} \times \Psi_{\alpha}^{\beta}(E, x) = E\Psi_{\alpha}^{\beta}(E, x), \qquad (1)$$

где индекс $\alpha = c$, v относится к зоне проводимости и валентной зоне соответственно, $\beta = i, j$. Индекс iсоответствует области $-L_w \leq x \leq 0$ узкощелевого материала (ZnSe, ширина запрещенной зоны $E_{0g} = 2.822$ эВ) с толщиной слоя L_w (см. рис. 1), а j — области $0 < x \leq b$ материала с широкой запрещенной зоной (ZnS, ширина запрещенной зоны $E_{0g} = 3.840$ эВ) и толщиной слоя b. Здесь $m_{\alpha}^{*\beta}$ — эффективная масса электрона (дырки), n_{α} — концентрация носителей; $V_{\alpha}^{\beta}(x, L_w, b, n_{\alpha})$ — периодический потенциал сверхрешетки,

$$V_{\alpha}^{\beta}(x, L_{w}, b, n_{\alpha}) = \Delta E_{0\alpha} + \Delta E_{\alpha \operatorname{mech}}(L_{w}, b) + \Delta E_{\alpha \operatorname{cl-d}}^{\beta}(x, L_{w}, b, n_{\alpha}).$$
(2)

Первое слагаемое в потенциале (2), $\Delta E_{0\alpha} = E_{0\alpha}^{j} - E_{0\alpha}^{i}$, описывает разрыв между зонами проводимости или валентными зонами контактирующих материалов в недеформированной сверхрешетке.

Второе слагаемое, $\Delta E_{\alpha \text{ mech}}(L_w, b)$, описывает изменение потенциальной энергии электронов (дырок), которое обусловлено механическими искажениями решетки, возникающими на гетерогранице из-за рассогласования параметров решеток a^i и a^j :

$$\Delta E_{\alpha \text{ mech}}(L_w, b) = (-1)^n [a^j_{\alpha} \varepsilon^j_{\text{mech}}(L_w, b) - a^i_{\alpha} \varepsilon^i_{\text{mech}}(L_w, b)].$$
(3)

Здесь n = 0 при $\alpha = c$ и n = 1 при $\alpha = v$; a_{α}^{j} , a_{α}^{i} — константы гидростатического деформационного

Рис. 1. Схематическое изображение зонной диаграммы механически напряженной сверхрешетки с локальными электрондеформационными ямами и барьерами (модифицированная модель Кронига-Пени). Штриховой линией показана аппроксимация периодического потенциала V^{β}_{α} (2) механически напряженной сверхрешетки, которая учитывает электрондеформационное взаимодействие.

потенциала *а*-зоны *j*-го и *i*-го материалов:

$$\varepsilon_{\text{mech}}^{\beta}(L_w, b) \equiv \operatorname{Sp} \varepsilon_{\text{mech}}^{\beta} = \frac{1}{a^{\beta}} [2a_{\parallel} + a_{\perp}^{\beta}] - 3, \quad (4)$$

где a_{\parallel} — параметр решетки в плоскости гетероконтакта, а a_{\perp}^{β} — параметр решетки в направлении оси сверхрешетки [6];

$$a_{\parallel}(L_w,b) = \frac{a^i G^i L_w + b a^j G^j}{G^i L_w + b G^j},\tag{5}$$

где G^i , G^j — модули сдвига в *i*- и *j*-м материалах;

$$a_{\perp}^{\beta} = a^{\beta} \left[1 - D^{\beta} \left(\frac{a_{\parallel}}{a^{\beta}} - 1 \right) \right], \tag{6}$$

где D^{β} — определяемый отношением упругих постоянных коэффициент, который зависит от кристаллографической ориентации решетки (в частности, для ориентации [001] мы получаем $D^{\beta} = 2C_{12}^{\beta}/C_{11}^{\beta}$ [6]). Третье слагаемое в (2) — это изменение потен-

циальной энергии носителей зоны α , обусловленное локальным перераспределением электронной плотности $\Delta n_{\alpha}^{\beta}(x, L_w, b, n_{\alpha})$ в окрестности механически напряженной из-за электрон-деформационного взаимодействия гетерограницы [8]. Иными словами — это локальное искажение профиля потенциала $V^{\beta}_{\alpha}(x, L_w, b, n_{\alpha})$, а именно

$$\Delta E^{\beta}_{\alpha \text{ el-d}}(x, L_w, b, n_{\alpha}) = -\frac{(a^{\beta}_{\alpha})^2}{K^{\beta}} \Delta n^{\beta}_{\alpha}(x, L_w, b, n_{\alpha}), \quad (7)$$

где K^{β} — всесторонняя упругая постоянная материала β ; $\Delta n^{\beta}_{\alpha} \; (\Delta n^{i}_{\alpha} > 0, \; \Delta n^{j}_{\alpha} < 0)$ — локальное изменение электронной (дырочной) плотности. Выражения для $\Delta n_{\alpha}^{\beta}$

Физика и техника полупроводников, 2000, том 34, вып. 4

представляют собой фурье-преобразования соответствующих корреляторов на основе одночастичных функций Грина. Такие функции Грина могут быть получены в результате отыскания самосогласованного решения системы пяти уравнений [10], учитывающих следующие величины: 1) концентрацию носителей; 2) электростатический потенциал, возникающий в окрестности механически напряженной гетерограницы вследствие изменения электронной (дырочной) плотности $\Delta n_{\alpha}^{\beta}$; 3) волновую функцию электрона (дырки) в окрестности механически напряженной гетерограницы; 4) функции Грина; 5) химический потенциал.

В конечном счете мы имеем

$$\Delta n_{\alpha}^{\beta}(x, L_{w}, b, n_{\alpha}) = R_{\alpha}^{\beta} \left[e \varphi_{\alpha}^{\beta}(x) - \left[\Delta E_{0\alpha} + \Delta E_{\alpha \text{ mech}}^{\beta}(L_{w}, b) \right] \right], \qquad (8)$$

где

$$R_{\alpha}^{\beta} = \left(\frac{3}{8\pi^{4}}\right)^{1/3} \frac{2m_{\alpha}^{*\beta}}{\hbar^{2}} \frac{n_{\alpha}^{1/3} \left[1 + P_{\alpha}^{\beta} n_{\alpha}^{1/3}\right]^{1/2}}{1 - (3/2) P_{\alpha}^{\beta} n_{\alpha}^{1/3} \left[1 + P_{\alpha}^{\beta} n_{\alpha}^{1/3}\right]}, \quad (9)$$
$$P_{\alpha}^{\beta} = \frac{2(a_{\alpha}^{\beta})^{2} m_{\alpha}^{*\beta}}{(3\pi^{2})^{2/3} \hbar^{2} K^{\beta}}.$$

Электростатический потенциал $\varphi^{\beta}_{\alpha}(x)$, возникающий в окрестности механически напряженной гетерограницы в результате локального перераспределения электронов (дырок), может быть получен путем решения уравнений Пуассона для *i*- и *j*-й областей сверхрешетки.

За начало отсчета потенциала квантовой ямы механически деформированной сверхрешетки выбраны дно ямы — для электронов и ее потолок — для дырок:

$$\frac{d^2\varphi^i_{\alpha}}{dx^2} - (\lambda^i_{\alpha})^2\varphi^i_{\alpha} = 0,$$

$$(\lambda_{\alpha}^{i})^{2} = e^{2}R_{\alpha}^{i}/\varepsilon^{i}\varepsilon_{0} \quad \text{при} \quad -L_{w} \leqslant x \leqslant 0; \qquad (10)$$

$$\frac{d^2 \varphi_{\alpha}^j}{dx^2} - (\lambda_{\alpha}^j)^2 \varphi_{\alpha}^j = -\frac{(\lambda_{\alpha}^j)^2}{e} [\Delta E_{0\alpha} + \Delta E_{\alpha \text{ mech}}^j(L_w, b)],$$
$$(\lambda_{\alpha}^j)^2 = e^2 R_{\alpha}^j / \varepsilon^j \varepsilon_0 \quad \text{при } 0 \leqslant x \leqslant b. \tag{11}$$

Здесь ε^{β} — статические диэлектрические проницаемости. Решения таких уравнений могут быть представлены в виде

$$\varphi_{\alpha}^{i} = A_{\alpha}^{i} \exp(\lambda_{\alpha}^{i} x) + B_{\alpha}^{i} \exp(-\lambda_{\alpha}^{i} x), \qquad (12)$$

$$\varphi_{\alpha}^{j} = A_{\alpha}^{j} \exp(\lambda_{\alpha}^{j} x) + B_{\alpha}^{j} \exp(-\lambda_{\alpha}^{j} x) + \frac{1}{e} [\Delta E_{0\alpha} + \Delta E_{\alpha \, \text{mech}}^{j} (L_{w}, b)], \qquad (13)$$

где $A^i_{\alpha}, B^i_{\alpha}, A^j_{\alpha}, B^j_{\alpha}$ — постоянные, которые определяются из условия непрерывности электростатических потенциалов $\varphi_{\alpha}^{i}(x)$ и $\varphi_{\alpha}^{j}(x)$ на гетерогранице, т.е. при x = 0, и из условия периодичности потенциала

$$arphi^{\imath}_{lpha}(b)=arphi^{\imath}_{lpha}(-L_w)$$

и нормальной составляющей вектора электрического смещения

$$D_{\alpha}^{in}(0) = D_{\alpha}^{jn}(0) \quad \mathbf{и} \quad D_{\alpha}^{jn}(b) = D_{\alpha}^{in}(-L_w).$$

$$\Delta E_{\alpha \text{ el-d}}^{i}(x, L_w, b, n_{\alpha}) = -\frac{(a_{\alpha}^{i})^2 R_{\alpha}^{i}}{K^i} [A_{\alpha}^{i} \exp(\lambda_{\alpha}^{i} x)$$

$$+ B_{\alpha}^{i} \exp(-\lambda_{\alpha}^{i} x)] \quad \text{при} \quad -L_w \leqslant x \leqslant 0, \quad (14)$$

$$\Delta E_{\alpha \text{ el-d}}^{j}(x, L_w, b, n_{\alpha}) = -\frac{(a_{\alpha}^{j})^2 R_{\alpha}^{j}}{K^j} [A_{\alpha}^{j} \exp(\lambda_{\alpha}^{j} x)$$

$$+ B^{j}_{\alpha} \exp(-\lambda^{j}_{\alpha} x)]$$
 при $0 \leq x \leq b.$ (15)

3. Результаты расчета и их обсуждение

Спектр носителей в механически напряженной сверхрешетке с периодическим потенциалом, учитывающим электрон-деформационное взаимодействие, определяется решением одномерного уравнения Шредингера (1) с аппроксимирующим кусочно-постоянным электрондеформационным потенциалом $\tilde{V}^{\beta}_{\alpha}(x, L_w, b, n_{\alpha})$ (рис. 1, штриховая линия), который описывает периодический потенциал $V^{\beta}_{\alpha}(x, L_w, b, n_{\alpha})$ (2) механически напряженной сверхрешетки. Последний получен методом самосогласованной электрон-деформационной связи [8]:

$$\begin{split} \tilde{V}^{\beta}_{\alpha}(x,L_{w},b,n_{\alpha}) \\ &= \begin{cases} -\Delta V^{i}_{\alpha}(\varepsilon_{\mathrm{mech}},n_{\alpha}) & \mathrm{при} - L_{w} \leqslant x \leqslant -L_{w} + d, \\ 0 & \mathrm{прu} - L_{w} + d < x < -d, \\ -\Delta V^{i}_{\alpha}(\varepsilon_{\mathrm{mech}},n_{\alpha}) & \mathrm{пpu} - d \leqslant x \leqslant 0, \\ V_{0\alpha}(\varepsilon_{\mathrm{mech}}) & \\ +\Delta V^{j}_{\alpha}(\varepsilon_{\mathrm{mech}},n_{\alpha}) & \mathrm{пpu} \ 0 < x \leqslant d, \\ V_{0\alpha}(\varepsilon_{\mathrm{mech}}) & \\ -\Delta v^{i}_{\alpha}(\varepsilon_{\mathrm{mech}},n_{\alpha}) & \mathrm{пpu} \ d < x \leqslant b - d, \\ V_{0\alpha}(\varepsilon_{\mathrm{mech}}) & \\ +\Delta V^{j}_{\alpha}(\varepsilon_{\mathrm{mech}},n_{\alpha}) & \\ \mathrm{пpu} \ b - d < x \leqslant b, \end{split}$$

где $\Delta V_{\alpha}^{i}(\varepsilon_{\text{mech}}, n_{\alpha}) \equiv \Delta E_{\alpha \,\text{el-d}}^{i}(x \rightarrow 0-; L_{w}, b, n_{\alpha})$ — глубина дополнительной локальной ямы, которая образовалась на гетероконтакте в основной квантовой яме (ZnSe) вследствие электрон-деформационного взаимодействия (см. рис. 1). В частности, для сверхрешетки ZnSe/ZnS при $n_{c} = 10^{17} \,\text{сm}^{-3}$ и $L_{w} = 10 \,\text{Å}$ имеем $\Delta V_{c}^{\text{ZnSe}} \approx 0.07 \,\text{мэB}$, а при $n_{c} = 10^{19} \,\text{сm}^{-3}$ и $L_{w} = 10 \,\text{Å}$ имеем $\Delta V_{c}^{\text{ZnSe}} \approx 0.3 \,\text{мэB}$. Здесь $\Delta V_{\alpha}^{j}(\varepsilon_{\text{mech}}, n_{\alpha}) \equiv \Delta E_{\alpha \,\text{el-d}}^{j}(x \rightarrow 0+; L_{w}, b, n_{\alpha})$ — высота локального дополнительного барьера, появляющегося на гетерогранице над основным барьером (ZnS) вследствие электрон-деформационного взаимодействия; $V_{0\alpha}(\varepsilon_{\text{mech}}) \equiv \Delta E_{0\alpha} + \Delta E_{\alpha \,\text{mech}}(L_{w}, b)$.

Ширина локальной дополнителной электрондеформационной ямы d^i_{α} (локального барьера d^j_{α}) выбиралась из условия $d^{\beta}_{\alpha} = (1/e)\sqrt{\varepsilon^{\beta}\varepsilon_0/R^{\beta}_{\alpha}}$, где ε^{β} — статическая диэлектрическая проницаемость β -го материала, а ε_0 — электрическая постоянная.

Рис. 2. Зависимость энергии основного состояния электрона E_{0c} в механически напряженной сверхрешетке ZnSe/ZnS от концентрации электронов проводимости n_c при толщине наращиваемого слоя ZnSe $L_w = 12$ (1), 20 (2), 30 (3), 40 (4) и 60 Å (5).

Из условия непрерывности волновой функции $\Psi^{\beta}_{\alpha}(E, x)$ и ее производной на границах раздела областей $(x = -L_w + d, x = -d, x = 0, x = b - d)$ сверхрешетки, а также периодичности $\Psi^{\beta}_{\alpha}(b) = \Psi^{\beta}_{\alpha}(-L_w) \exp[ik(L_w + b)]$ было получено дисперсионное уравнение для определения зависимости спектра носителей от средней концентрации носителей n_{α} при разной толщине L_w наращиваемого слоя ZnSe.

На рис. 2 представлены результаты численного расчета энергии основного состояния электрона Е₀с механически напряженной сверхрешетки ZnSe/ZnS. При расчете использовались следующие параметры материалов и их зонной структуры: $m_{0c}^{*ZnSe} = 0.17m_0$, $a_c^{ZnS} = -2.78$ эВ, $a_c^{ZnSe} = -3.65$ эВ, $K^{ZnSe} = 0.379$ эВ/Å³, $a^{ZnSe} = 5.6687$ Å, $a^{ZnS} = 5.4093$ Å, b = 59.5 Å, $\Delta E_{0c} = 0.198 \, \Im B, \ \varepsilon^{ZnSe} = 8.1, \ \varepsilon^{ZnS} = 8.3 \ [5,6].$ Как следует из рис. 2, в рассматриваемом диапазоне концентраций электронов $(10^{15} - 10^{19} \text{ см}^{-3})$ зависимость положения уровня основного состояния от концентрации получается различной при разной толщине L_w наращиваемого слоя. При толщине 10-20 Å она монотонна, тогда как при толщине L_w , большей 20 Å, зависимость приобретает немонотонный характер с минимумом, положение которого определяется толщиной L_w: чем больше L_w, тем при меньших концентрациях реализуется минимум уровня основного состояния. Такое нетривиальное поведение уровня основного состояния можно качественно объяснить, используя следующие соображения. Энергия основного состояния определяется двумя факторами, связанными с изменением концентрации носителей. С одной стороны,

ee увеличение сопровождается понижением дна потенциальной ямы из-за электрон-деформационного взаимодействия. Само по себе оно сопряжено с опусканием уровня основного состояния. С другой стороны, увеличение концентрации носителей приводит к уменьшению ширины d (см. рис. 1) и в результате к поднятию уровня. Таким образом, его окончательное положение определяется конкуренцией упомянутых противоположных факторов. Как следует из сказанного выше, первый из них пропорционален $n_c^{1/3}$, тогда как второй — пропорционален $n_c^{-1/3}$, что и является причиной того, что суммарная зависимость приобретает немонотонный характер. Исходя из приведенных соображений можно предположить, что такой же немонотонный характер будет иметь зависимость положения уровня основного состояния от концентрации и при толщине L_w, попадающей в область 10-20 Å, но при концентрациях, более высоких, чем рассмотренные в данной работе.

Приведенные соображения позволяют качественно объяснить существование минимума $E_{0c}(n_c)$. Количественно положение уровня определяется эффектами, которые были достаточно строго учтены в рассматриваемой задаче.

Список литературы

- [1] Молекулярно-лучевая эпитаксия гетероструктуры, под ред. Л. Ченга, К. Плога (М., Мир, 1989).
- [2] А.Е. Жуков, А.Ю. Егоров, В.М. Устинов, А.Ф. Цацульников, М.В. Максимов, Н.Н. Фалеев, П.С. Копьев. ФТП, 31, 19 (1997).
- [3] А.В. Кавокин, С.И. Кохановский, А.И. Несвижский, М.Э. Сасин, Р.П. Сейсян, В.М. Устинов, А.Ю. Егоров, А.Е. Жуков, С.В. Гупалов. ФТП, **31**, 1121 (1997).
- [4] М.С. Бродин, В.В. Тищенко, Н.В. Бондарь, А.В. Коваленко, А.Ю. Мекекечко. УФЖ, 37, 1802 (1991).
- [5] T. Taguchi, Y. Kawakami, Y. Yamada. Physica B, 191, 23 (1993).
- [6] G. Chris, Van de Walle. Phys. Rev. B, 39, 1871 (1989).
- [7] В.Я. Алешкин, В.И. Гавриленко, И.В. Ерофеева, Д.В. Козлов, О.А. Кузнецов, М.Д. Молдавская. ФТП, **32**, 1240 (1998).
- [8] И.В. Стасюк, Р.М. Пелещак. УФЖ, 36, 1744 (1991).
- [9] М. Херман. Полупроводниковые сверхрешетки (М., Мир, 1989) гл. 3, с. 125.
- [10] Р.М. Пелещак, Б.А. Лукиянец. Письма ЖТФ, 24, 37 (1998).

Редактор Л.В. Шаронова

Energy spectrum dependence on concentration of carriers in a mechanically strained ZnSe/ZnS superlattice

R.M. Peleshchak, B.A. Lukianets

Drogobych State Pedagogical University, 293720 Drogobych, Ukraine

Abstract Within the frame of the self-consistent electrondeformation binding model, data are presented that in the vicinity of a heterocontact in the interior of the primary barrier (ZnS) in a mechanically strained ZnSe/ZnS superlattice arise secondary periodical local electron-deformation wells and secondary local electron-deformation barriers.

It is established that for layer thicknesses from 10 Å to 20 Å the energy of ground electron state E_{0c} monotonically decreases with increasing conduction electron concentration n_c and for the thickness above 20 Å concentration dependence $E_{0c} = f(n_c)$ is nonmonotone.