Пленки аморфного бора с повышенной электропроводностью

© О.А. Голикова

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 20 сентября 1999 г. Принята к печати 23 сентября 1999 г.)

Представлены результаты исследований электрических свойств наноструктурированных пленок аморфного бора *a*-В в сравнении с результатами, полученными для объемных образцов того же материала, а также для кристаллов некоторых "аморфноподобных" боридов со сложной икосаэдрической структурой. Предлагаются модели, объясняющие повышенную электропроводность пленок *a*-В.

1. Введение

В настоящее время значительный интерес вызывают так называемые наноструктурированные тонкие пленки аморфных полупроводников, содержащие включения нанокристаллов или нанокластеров с размерами ~ 1 нм, распределенные в их аморфной матрице. Как было показано, например для *a*-Si:H [1,2], величина электропроводности таких негомогенных пленок

$$\sigma \sim \exp(-\Delta E_{\sigma}/kT)$$

возрастает примерно на порядок по сравнению с σ "стандартных" гомогенных пленок при $\Delta E_{\sigma} = \text{const}$, T = const. Следует отметить, что в этих пленках нановключения создаются при специальных условиях их осаждения [1].

Пленки аморфного бора (*a*-B) отличаются тем, что они всегда содержат нановключения — икосаэдрические кластеры (икосаэдры B_{12} с размерами d = 0.51 нм или их конгломераты). Поэтому они представляют особый интерес для физики наноструктурированных пленок. Отметим, что икосаэдрические кластеры были обнаружены не только в пленках, но и в порошках, и в объемных образцах *a*-B при использовании различных методов изучения их структуры (дифракции электронов [3], нейтронов [4] и рентгеновских лучей [5], ИК спектроскопии [6,7], рамановской спектроскопии [7,8]).

Цель настоящей работы — представить результаты исследований электрических свойств пленок *a*-В в сравнении с результатами, полученными для объемных образцов, а также для кристаллов некоторых "аморфноподобных" боридов [9].

2. Методы получения образцов

Пленки *а*-В осаждались на кварцевые подложки в результате испарения кристаллического В с помощью электронно-лучевого нагрева, а также катодным распылением мишени из кристаллического бора ионами Ar. Легирование углеродом осуществлялось сораспылением графитовой мишени. Температура осаждения $T_s = 300-350^{\circ}$ С, толщина пленок составляла $d \lesssim 1$ мкм.

В последнее время для получения пленок применялись и другие методы [5], среди которых наиболее интересен

метод удаленной ЭПР плазмы с использованием газовых смесей $B_2H_6 + H_2$. Этим методом, варьируя T_s и величину

$$c(B_2H_6) = Q(B_2H_6) / [Q(B_2H_6) + Q(H_2)],$$

где Q — скорость прокачки газа, можно получить пленки либо a-B, либо a-B:H. В отношении неконтролируемых примесей данный метод считают наиболее "чистым" [10]. Поэтому особенно важно сравнить свойства полученных нами пленок и пленок, полученных в работе [10].

Объемные образцы *а*-В получали термическим разложением гидридов бора [11]. Для электрических измерений использовались образцы с размерами $0.2 \times 0.4 \times 1.5$ см³. Кристаллы аморфноподобных боридов REB₆₆ (RE — обозначение редкоземельного элемента) с размерами l = 7.5 см, d = 0.4-0.6 см были получены вертикальной бестигельной зонной плавкой в инертной атмосфере [9].

3. Экспериментальные результаты и их обсуждение

Рассмотрим свойства пленок *a*-B. Все они независимо от метода осаждения имели при комнатной температуре необычно высокую электропроводность: $\sigma \simeq 10^{-3}$ С/см. Исходя из этого иногда их называли "металлическими" пленками [5]. Однако целый ряд фактов свидетельствует против этого.

Прежде всего при их исследовании была определена как термическая, так и оптическая ширина запрещенной зоны (1.3 и 1.1 эВ соответственно), а температурная зависимость электропроводности при T < 700 К является типичной для негидрированного аморфного полупроводника (рис. 1). Кроме того, в сильных электрических полях наблюдается эффект переключения, также характерный для аморфных полупроводников.

Перечислим и ряд других данных, известных из опубликованных работ.

Во-первых, при исследовании коэффициента поглощения пленок не наблюдалось поглощения свободными носителями заряда. Во-вторых, показатель преломления $n(\omega) = \text{const } \text{в}$ области длинных волн (2–4 мкм), в то время как для металлов должен наблюдаться резкий

Рис. 1. Температурные зависимости электропроводности: *I* — объемный образец *a*-B, *2* — пленка *a*-B, *3* — кристалл YB₆₆; все соединения REB₆₆ — по электрическим параметрам аналоги образцов из работы [9].

рост *n* с понижением ω [10]. Наконец, координационное число атомов В в пленках *Z* = 6, в то время как типичным для аморфных металлов является *Z* = 12 [5].

Сравним теперь электропроводность пленок и объемных образцов *а*-В (рис. 1). Видно, что при близких величинах энергии активации ΔE_{σ} в области температур до начала собственной проводимости (T < 700 K) величина σ объемного образца примерно в 200 раз ниже, чем пленки. Эта разница, по-видимому, относится за счет вышеуказанного эффекта увеличения электропроводности, присущего именно наноструктурированным пленкам.

Термоэдс *а*-В всегда положительна (рис. 2), т.е. в электропереносе преобладают дырки. В области, где электропроводность экспоненциально возрастает, а термоэдс падает с ростом температуры (T = 400-700 K),

$$S = (k/e)(\text{const} + \Delta E_s/kT),$$

причем $\Delta E_{\sigma} > \Delta E_s$, т. е. $\Delta E_{\sigma} - \Delta E_s = \Delta E_{\mu}$, где ΔE_{μ} — энергия активации подвижности дырок при электропереносе по делокализованным состояниям валентной зоны.

Величина ΔE_{μ} рассматривается как мера флуктуаций электростатического потенциала в матрице аморфной пленки и, следовательно, флуктуаций края зоны, по состояниям которой осуществляется электроперенос. Существенно, что ΔE_{μ} зависит от плотности дефектов (оборванных связей) N_D . Например, $\Delta E_{\mu} = 50$ мэВ для нелегированных пленок *a*-Si:H, имеющих концентрацию $N_D < 10^{16} \text{ см}^{-3}$, в то время как ΔE_{μ} достигает величин до 250 мэВ после длительной интенсивной засветки этих пленок, когда значение N_D возрастает до 10^{17} см^{-3} (эффект Стаблера–Вронского) [12]. Для объемных образцов *a*-В типичные величины $\Delta E_{\mu} = 190$ мэВ, в то время как для пленок *a*-В — $\Delta E_{\mu} = 100$ мэВ. Таким образом, величины ΔE_{μ} свидетельствуют, во-первых, о более "совершенном" крае валентной зоны именно

Рис. 2. Температурные зависимости термоэдс. *1–3* — обозначения такие же, как на рис. 1.

Рис. 3. Температурные зависимости дрейфовой подвижности дырок μ_D в пленках *a*-B, осажденных при $T_s = 300$ (1) и 350° C (2).

Физика и техника полупроводников, 2000, том 34, вып. 3

Рис. 4. Рамановские спектры для пленок *a*-B: нелегированной (*1*) и легированной углеродом (*2*).

Рис. 5. Электропроводность при комнатной температуре (1) и энергия активации электропроводности (2) в зависимости от концентрации углерода в пленках *a*-B. Здесь же представлены данные из работы [14] по электропроводности (3, 4) и энергии активации электропроводности (5, 6) для пленок *a*-B:H — нелегированной (3, 5) и легированной (4, 6) углеродом; соотношение концентраций B:C в плазме тлеющего разряда составляло 125:1.

для пленок. Во-вторых, они объясняют увеличение электропроводности пленок в указанном выше интервале температур по сравнению с объемными образцами.

Рассмотрим результаты исследования дрейфовой подвижности дырок (μ_D) в пленках *а*-В [13] (рис. 3). Подвижность

$$\mu_D \sim \exp(-\Delta E_{\mu_D}/kT),$$

где величина $\Delta E_{\mu_D} = 85 \text{ мэВ}$ значительно меньше, чем для других аморфных полупроводников, т.е. электроперенос осуществляется с захватом носителей тока на мелкий уровень ловушек. Это, очевидно, говорит о сравнительно быстром спаде плотности локализованных состояний при удалении от края валентной зоны, т.е. о повышении степени упорядочения структуры. На наш взгляд, снижение величины ΔE_{μ_0} , как это и наблюдается.

Представляется интересным рассмотреть влияние примесей на структуру и электропроводность пленок *а*-В. На рис. 4 представлены рамановские спектры для нелегированной и легированной углеродом пленок [8]. Несмотря на характерную для аморфного полупроводника "размытость" спектра, в спектре для нелегированной пленки выделяются следующие пики: при 270, 580, 760 и $1220 \,\mathrm{cm}^{-1}$. Отметим, что частоты пиков в спектре пленки при 760 и 1220 см⁻¹ близки к частотам (связанным с колебаниями атомов внутри икосаэдра В12 и в соседних икосаэдрах), характерным для кристаллов (800 и 1160 см⁻¹ соответственно). При введении 9 ат% углерода спектр значительно сглаживается (рис. 4). Это означает, что углерод "разрушает" икосаэдрические включения в пленках. В соответствии с этим с увеличением содержания углерода проводимость σ пленок *a*-В падает, причем ΔE_{σ} не изменяется (рис. 5). Отсюда можно заключить, что атомы С модифицируют структуру пленок а-В, а не являются электрически активной примесью, как в а-B:H [14].

4. Заключение

Остановимся на моделях, предлагаемых для объяснения высокой электропроводности наноструктурированных пленок *a*-B.

Если нановключения кластеров, распределенные в аморфной матрице пленки, приводят к снижению локальных напряжений и, как следствие, к снижению плотности дефектов в этой матрице, то величины флуктуаций электростатического потенциала и соответственно флуктуации края валентной зоны уменьшаются. Поэтому энергия активаци ΔE_{μ} уменьшается, а подвижность дырок в делокализованных состояниях увеличивается. Таким образом, электропроводность пленок а-В возрастает, причем это — чисто "пленочный" эффект, не наблюдающийся для объемных образцов, хотя они тоже содержат икосаэдрические включения. В пользу данной модели говорят результаты исследований пленок а-В с примесью углерода, изменяющего структуру. В результате величины σ пленок *а*-В значительно снижаются. В рамках данной модели нанокластеры бора играют роль модификатора структуры пленки, а электроперенос осуществляется по аморфной матрице.

Альтернативной может быть модель, в рамках которой пленка *a*-В в основном состоит из икосаэдрических нанокластеров, отделенных друг от друга тонкими аморфными прослойками. Действительно, в некоторых пленках *a*-В были обнаружены различные по величине кластеры, вплоть до B_{156} — суперикосаэдра $B_{12}(B_{12})_{12}$ [5], который, как известно, является базисной единицей кристаллов соединений REB₆₆, а REB₆₆ имеют самую сложную структуру из всех соединений бора [15]. Они были названы аморфноподобными боридами [9], поскольку их оптические, тепловые и электрические свойства не отличаются от свойств объемных образцов *a*-B, за исключением того, что величины их электропроводности при комнатной температуре существенно выше, а термоэдс — ниже (рис. 1, 2), чем в объемных образцах *a*-B.

Действительно, величина σ YB_{66} ближе по величине σ к электропроводности пленок $a\text{-B.}^*$

Состав элементарной ячейки кристалла REB₆₆ описывается следующей формулой: RE₂₄[B₁₂(B₁₂)₁₂][B₃₆]₄[B₄₈]₄, причем кристалл строится так, что кластеры В156 окружены "прослойками", состоящими из конгломератов REB₃₆ и REB₄₈ [15]. Существенно, что степень неупорядоченности структуры кластера значительно меньше, чем прослоек. Так, длина связи В-В в кластере последовательно возрастает при переходе от центрального икосаэдра к наружному икосаэдру в пределах 0.173-0.184 нм, в то время как в конгломерате YB₃₆, например, она варьируется в пределах 0.172-0.217 нм. Видно, что такая структура напоминает структуру пленок а-В, если они в основном состоят из нанокластеров, отделенных друг от друга тонкими аморфными прослойками. В этом случае при достаточно высоких температурах основной вклад в электроперенос вносят кластеры со сравнительно упорядоченной структурой, чем и объясняется высокая электропроводность как соединений REB₆₆, так и пленок *а*-В.

Результаты исследования пленок *a*-B, представленные в настоящей работе, интерпретируются в рамках первой из упомянутых выше моделей (электроперенос по матрице), как и результаты для наноструктурированных пленок других аморфных полупроводников. Вторая модель электропереноса по нанокластерам, по-видимому, применима только для пленок *a*-B, имеющих специфическую структуру — в основном состоящих из нанокластеров больших размеров. Такие пленки, несомненно, представляют самостоятельный интерес.

Список литературы

- P. Roca i Cabarrocas, S. Hamma, P. St'ahel, C. Longeaud, J. Kleider, R. Meaudre, M. Meaudre. In: *Proc. of Conf. EPSEC-14* (Barselona, 1997) 5A20.
- [2] О.А. Голикова, М.М. Казанин. ФТП, 33, 97 (1999).
- [3] K. Katada. Japan. J. Appl. Phys., 5, 582 (1966).
- [4] R.G. Delaplane, T. Lundström, U. Dahlberg, W.S. Howells. In: *Boron-rich solids (AIP Conference 231)*, ed. by D. Emin, T.L. Aselage, A.C. Switendick, B. Morosin and C.L. Beckel (Albuquerque, NM, 1990) p. 241.
- [5] M. Kabayashi, I. Higashi, T. Oyama, N. Kanekama, M. Takami, K. Shirai. Japan. J. Appl. Phys., 10, 25 (1993).
- [6] A.A. Berezin, O.A. Golikova, M.M. Kazanin, T. Khomidov, D.N. Mirlin, A.V. Petrov, A.S. Umarov, U.K. Zaitsev. J. Non-Cryst. Sol., 16, 237 (1974).
- [7] U. Kuhlmann, H. Werheit, T. Lundström, W. Robers. Japan. J. Appl. Phys., 10, 88 (1993).
- [8] J.S. Lannin. Sol. St. Commun., 25, 363 (1978).
- [9] О.А. Голикова. ФТП, **26**, 1604 (1992).
- [10] K. Shurai, S. Gonda. J. Phys. Chem. Sol., 53, 1081 (1992).

- [11] A.F. Zhigach, D.C. Stasinevich. In: *Boron and Refractory Borides*, ed. by V.I. Matkovich (Springer, 1977) p. 214.
- [12] D. Ruff, H. Mell, L. Tolt, G. Huhn, I. Silber, W. Fuhs. In: Abstracts Conf. ICAMS-17 (Budapest, 1997) ThP113/4.
- [13] M. Takeda, K. Kimura, K. Murayama. In: Abstracts Conf. ICAS-16 (Kobe, 1995) p. 244.
- [14] B.L. Zalph, L.J. Dimmey, H. Park, P.L. Jones, F.H. Cocks. Phys. St. Sol. (a), 62, K186 (1980).
- [15] K.E. Spear. In: Phase Diagrams. Materials Science and Technology (Academic Press, N.Y. 1976) v. IV, p. 92.

Редактор Т.А. Полянская

Amorphous boron films with an enhanced electroconductivity

O.A. Golikova

loffe Physicotechnical Institute, Russian Academy of Sciences 194021 St. Petersburg, Russia

Abstract The results on electrical properties of nanostructured amorphous Boron films in comparison with Boron bulk samples and with those of "amorphous-like" borides having a complex icosahedral lattice are presented. Models are proposed to explain an enhanced electroconductivity of Boron films.

^{*} Тем не менее расхождение в эффекте термоэдс S у REB₆₆ и пленок *a*-В значительно как по величине, так и по температурному ходу (рис. 2). Кроме того, величины σ при низких температурах существенно выше (рис. 1).