Электронные свойства дефектов с переменной валентностью в кристаллических полупроводниках

© А.Н. Крайчинский, Л.И. Шпинар, И.И. Ясковец

Институт физики Национальной академии наук Украины, 252650 Киев, Украина

(Получена 17 марта 1999 г. Принята к печати 26 августа 1999 г.)

Исследованы электронные свойства дефектов, находящихся в различных пространственных конфигурациях со своим набором валентных связей. Исследование выполнено на основе анализа функционала энергии, в котором учтены упругая энергия в ангармоническом приближении, изменение электронного терма дефектной квазимолекулы, обусловленное локализацией электронов и энергия взаимодействия Хаббарда. Выделены два класса таких дефектов: дефекты с сильным и слабым электрон-атомным взаимодействием. В случае дефектов первого типа, характеризующихся положительной эффективной энергией корреляции, топология адиабатического потенциала не изменяется после электронной локализации. К этому классу дефектов относится пара атомов углерода (C_iC_s) и донорно-акцепторные пары в кристаллическом кремнии. Для этого дефекта вычислен эффективный уровень заполнения как функция параметров адиабатического потенциала. Существенным в свойствах дефектов второго типа является модификация первоначального двухъямного потенциала в одноямный после локализации носителей. В этом случае эффективная корреляционная энергия может быть как положительной, так и отрицательной. Анализ известных экспериментальных результатов дает основания полагать, что к этому классу дефектов принадлежит межузельный атом бора в кремнии. Используя экспериментальные данные Воткинса, вычислен адиабатический потенциал, в котором движется межузельный атом бора, а также энергии активации переходов между различными зарядовыми состояниями этого дефекта и эффективный уровень заполнения.

Стабильные дефекты, образующиеся в полупроводниках при облучении, представляют собой сложные образования, включающие в свой состав как примесные атомы, так и атомы матричного вещества. Характер связей между атомами молекулы дефекта обычно отличается от присущего данному материалу, и поэтому дефектам радиационного происхождения в отличие от дефектов кулоновского типа [1] свойственны глубокие уровни в запрещенной зоне полупроводника. Захват (эмиссия) электронов на состояния радиационных дефектов (например, вакансионного типа [2]) обычно приводит к образованию (исчезновению) связей между атомами молекулы дефекта. По этой причине такие дефекты характеризуются достаточно сильным электрон-колебательным взаимодействием, так как при изменении зарядного состояния координаты атомов R_i в молекуле дефекта изменяются из-за изменения связей между ними.

Энергию $E_j(x)$ молекул дефекта при локализации *j* электронов в одномодовом приближении можно представить в виде

$$E_j(x) = V(x) + j\delta E(x) + U_c(x)\delta_{ij},$$
(1)

где x — обобщенная конфигурационная координата, V(x) — упругая энергия молекулы в отсчетном состоянии (j = 0), $\delta E(x) = E_q(x) - E_q$ — изменение терма qквазимолекулы, обусловленное заселением его электроном, а $U_c(x)$ — энергия хаббардовского межэлектронного взаимодействия при локализации двух носителей заряда одинакового знака. В случае дефектов вакансионного типа в кристаллическом Si (например, вакансия, *A*-центр, а также дефекты, связываемые с наличием примесных атомов Au, Pt, Ni) роль обобщенной координаты играет "дыхательная" мода и при нахождении $E_j(x)$ обычно ограничиваются гармоническим приближением, предполагая смещение атомов (x) малыми по сравнению с межатомными расстоянисм $a (x \ll a)$.

Существует другой класс дефектов, которые могут находиться в разных пространственных конфигурациях n со своим набором ковалентных связей, каждая из которых реализуется с вероятностью P_j^n , при заданном числе j локализованных электронов. Примерами таких дефектов в Si является пара атомов углерода, один из которых находится в межузельном, а другой — в узельном положениях (C_iC_s), дефект (B, V), где B — атом бора, а V — вакансия, а также ряд донорно-акцепторных пар. По-видимому, к таким дефектам относится и межузельный атом бора, образующийся в кремнии при облучении электронами и γ -квантами. Действительно, экспериментальные результаты [3,4] подтверждают имеющее место переключение химических связей при изменении зарядового состояния атома бора.

Электронные свойства мультистабильных дефектов изучались как экспериментально, так и теоретически [5,6]. Здесь рассматривается простая модель, позволяющая описывать их электронные свойства и вероятности электронных переходов между различными зарядовыми состояниями бистабильных дефектов. В случае дефектов с переменной конфигурацией адиабатические потенциалы существенно ангармоничны, и для описания их электронных свойств необходимо использовать подход, отличный от обычного "поляронного" [7], используемого при описании дефектов вакансионного типа.

$$E_j(x) = A(\eta x^2 + tx^3 + x^4) + jE_0 + jQx + U_c\delta_{j2}, \quad (2)$$

которое получается из (1) при разложении $E_q(x)$ в ряд по степеням x (зависимость коэффициентов при xⁿ от *ј* несущественна при *n* ≥ 2 [8,9]). Потенциал вида (1)-(2) использовался при анализе электронных состояний в щели по данным о подвижности халькогенидных стеклообразных полупроводников (ХСП) [10,11]. В этом контексте кристаллические полупроводники отличаются от ХСП тем, что в них концентрация перестраиваемых дефектов существенно меньше, а распределение $F(\eta, t)$ параметров η и t, характеризующих молекулу дефекта, является δ -образным. В соотношении (2) $A = (1/2)k_0a_0^2$ $\approx 10-30$ эВ, где a_0 — величина порядка атомного радиуса, а A и k₀ — обычные масштабы энергии и упругих констант в ковалентных полупроводниках. Величины η $(|\eta| \ll 1)$ и t $(t^2 \ll 1)$ определяются конкретной микроструктурой квазимолекулы дефекта и имеют смысл параметров, характеризующих "мягкость" дефекта и асимметрию потенциала. При *j*-кратном (j = 0, 1, 2) заселении терма E_q электрон-атомное взаимодействие (пропорциональное постоянной Q) может вызвать деформацию среды и сильное понижение терма $\delta E_q(x) = E_q(x) - E_q \leq Q$. При этом возникает, вообще говоря, новая дополнительная связь, что и приводит к изменению пространственной конфигурации квазимолекулы дефекта — переходу из одного минимума потенциала в другой. Полный анализ потенцила (2) достаточно громоздкий, однако можно выделить следующие его свойства. Потенциал (2) имеет один минимум независимо от числа электронного заполнения *j*, если $p = 1 - 8\eta/3t^2 < 0$. При p > 0 — случай, представляющий интерес — топология потенциала определяется величиной

$$D = \left(\frac{\eta}{3} + \frac{t^2}{8}\right)^3 - \frac{1}{8}\left(\frac{\eta t}{2} + \frac{t^2}{8} + \frac{jQ}{A}\right)^2.$$
 (3)

При этом выделяются два класса дефектов с потенциалом типа (2): дефекты с сильным (D < 0) и слабым (D > 0) электрон-атомным взаимодействием. Функция D делит фазовое пространство параметров (q = Q/A, t, η) молекулы дефекта поверхностями

$$q_{1,2} = -\frac{\eta^* t}{2} - \frac{t^2}{8} \pm \sqrt{\frac{1}{64} \left(t^2 + \frac{8\eta}{3}\right)^3}$$
(4)

на три области. Область значений $Q_1 > Q > Q_2$ соответствует двухъямным потенциалам, а в областях $Q > Q_1$ и $Q < Q_2$ существуют молекулы дефекта с одноямным

Физика и техника полупроводников, 2000, том 34, вып. 2

потенциалом. Критическим потенциалам, определяющим свойства электронных состояний в области щели по подвижности для халькогенидных стеклообразных полупроводников, исследованным в работе [10,11] соответствует область $\eta \ll 1(\eta > 0)$.

Существенным в свойствах дефектов с сильным электрон-атомным взаимодействием является возможное изменение первоначально двухъямного характера потенциала (при заселении j = 0) после захвата носителей (j = 1, 2) на одноямный. Для иллюстрации этих общих свойств потенциала (2) рассмотрим роль локализующихся носителей заряда в формировании адиабатического потенциала при небольших значениях его "затравочной" асимметрии $(t^2 \ll 1, \eta = -\sigma < 0)$. В этом случе потенциал будет двухъямным при выполнении условия $(1/8)(jQ/A)^2 < |\eta|^3/27$ и одноямным при выполнении обратного неравенства. В случае выполнения первого неравенства положения минимумов и соответствующие значения потенциала в этих минимумах определяются выражениями

$$x_{2,1} = -\left(\frac{3}{8}t + j\frac{Q}{4A\sigma}\right) \pm \left(\sqrt{\frac{\sigma}{2}} - \frac{t}{8}\sqrt{\frac{18}{\sigma}}\frac{jQ}{4A\sigma}\right), \quad (5)$$
$$E_j(x_{2,1}) = \left(-\frac{A}{4}\sigma + U_c\delta_{j2} + jE_0 - \frac{3}{8}jQt\right)$$
$$\pm \left(\frac{1}{4}A\sigma\sqrt{2\sigma} + jQ\sqrt{\frac{\sigma}{2}}\right). \quad (6)$$

Таким образом, для разности потенциалов в минимумах $(\delta E_{12} \equiv E_j(x_{2\min}) - E_j(x_{1\min}))$ имеем

$$\delta E_{12} = A\sigma t \sqrt{\frac{\sigma}{2}} + jQ\sqrt{2\sigma}.$$
 (7)

Эта разность может быть как положительной, так и отрицательной в зависимости от соотношения между значениями и знаками параметров Q и t. В случае сильного электрон-атомного взаимодействия (D < 0, $j \neq 0$) адиабатический потенциал имеет один минимум в точке

$$x_{\min} \approx -\frac{1}{2} \left[\left(j \frac{2Q}{A} \right)^{1/3} + \frac{1}{3} \left(\frac{4A}{jQ} \right)^{1/3} + \frac{t}{2} \right],$$
 (8)

в которой значение потенциала определяется выражением

$$E_j(x_{\min}) \approx -\frac{1}{4} \left[A\sigma \left(\frac{jQ}{A}\right)^{1/3} + jQ \right] t - \frac{3}{8} jQ \left(j\frac{2Q}{A}\right)^{1/3} - \frac{1}{4} A\sigma \left(j\frac{2Q}{A}\right)^{2/3} - \frac{1}{6} A\sigma^2 + jE_0 + U_c\delta_{j2}.$$
 (9)

Таким образом, дефекты с переменной конфигурацией подразделяются на два класса с сильным и слабым

Потенциал дефекта в зависимости от обобщенной координаты *х* при числе локализованных электронов *j*: *1* — 0, *2* — 1, *3* — 2.

электрон-атомным взаимодействием. Локализация носителей приводит к асимметрии двухъямного потенциала W(x). Эта асимметрия усиливается при одинаковом знаке t и Q или ослабляется (изменяет знак) при противоположных знаках, и в случае больших значений |Q| изменяется топологический характер потенциала (см. рисунок).

По-видимому, к классу со слабым электрон-атомным взаимодействием относятся донорно-акцепторные пары, а также дефекты C_iC_s и BV в облученном кристаллическом кремнии. Действительно, как показывают исследования ЭПР, в случае дефекта C_iC_s не наблюдается заметного электрон-колебательного взаимодействия, и при изменении зарядового числа адиабатические потенциалы остаются двухъямными. В случае дефектов со слабым взаимодействием эффективная корреляционная энергия $U_{\text{eff}} = E_2(x_{\min}) + E_0(x_{\min}) - 2E_1(x_{\min})$ положительна, в то время как при наличии сильного электрон-атомного взаимодействия

$$U_{\text{eff}} \approx U_c - 0.19Q \left(\frac{2Q}{A}\right)^{1/3} + \frac{1}{2}A\sigma \left[0.26 \left(\frac{2Q}{A}\right)^{2/3} + 0.37 \left(\frac{Q}{A}\right)^{1/3} t\right] \quad (10)$$

может быть как положительной, так и отрицательной.

При статистическом описании дефектов с изменяющейся конфигурацией будем исходить из канонического распределения, согласно которому вероятность нахождения дефекта в состоянии, характеризуемом полной энергией $E_{\text{tot}}(x, j) = E_j(x) - jF$, где F — уровень Ферми, имеет вид

$$P(x, j) = A(j) \exp\left(-\frac{E(x, j)}{kT}\right),$$
$$A(j) = \left[\sum_{j=0}^{2} \iint \exp\left(-\frac{E(x, j)}{kT}\right) dx dp\right]^{-1}.$$
 (11)

Тогда вероятность нахождения дефекта в j-м (j = 0, 1, 2) зарядовом состоянии равна

$$P(J) = \left[\sum_{j=0}^{2} \iint \exp\left(-\frac{E(x,j)}{kT}\right) dx dp\right]^{-1} \\ \times \iint \exp\left(-\frac{E(x,j)}{kT}\right) dx.$$
(12)

Как видно из этого выражения, основной вклад в интегралы дают окрестности минимумов x_k потенциала $E_j(x)$, вблизи которых $E_j(x) \approx E_j(x_k) + \frac{1}{2}B_{jk}(x-x_k)^2$ и

$$\int_{0}^{\infty} \exp\left(-\frac{E_{i}(x)}{kT}\right) dx \approx \sum_{k=1}^{n} \left(\frac{2\pi}{B_{ik}}\right)^{2} \exp\left(-\frac{E_{i}(x_{k}) - iF}{kT}\right),$$
(13)

где B_{jk} — величины, характеризующие деформационную восприимчивость дефекта в данной конфигурации, а суммирование ведется по всем *k*-минимумам, число которых не обязательно совпадает с числом зарядовых состояний дефекта (*j*). Очевидно, что наибольший вклад дает наиболее глубокий минимум. В случае одинаковых минимумов результат суммирования сводится к умножению на число минимумов. Это обстоятельство можно отобразить путем введения фактора вырождения $g_n(j)$, где n — число одинаковых минимумов, которое может быть разным для разных *j*. Фактор электронного вырождения обозначим посредством $g_e(j)$. Так что общий фактор вырождения $g_k(j) = g_e(j)g_n(j)/\sqrt{B_{jk}}$. Итак, выражение для вероятности нахождения дефекта в *j*-м зарядовом состоянии, вблизи *k*-го минимума, имеет вид

$$P_{k}(j) = \frac{g_{k}(j) \exp\left(-\frac{E_{j}(x_{k}) - jF}{kT}\right)}{\sum_{j=0}^{2} \sum_{k=1}^{n} g_{k}(j) \exp\left(-\frac{E_{j}(x_{k}) - jF}{kT}\right)}.$$
 (14)

При анализе процессов перехода дефектов из зарядового состояния *i*, характеризуемого обобщенной координатой x, в состояние с параметрами y и k = j + 1подразумевается существование в системе некоторого другого состояния $\psi_R(r)$ с энергией ε_R , которое снабжено лишним электроном, и вероятность его заполнения определяется распределением Ферми $f_0(\varepsilon_R)$. Одноэлектронные переходы осуществляются в соответствии с законом сохранения энергии: $E_{tot}(x, j) = E_{tot}(y, k)$, где $E_{\text{tot}}(x, j) = E_j(x) + \varepsilon_R$, а $E_{\text{tot}}(y, k) = E_k(y)$. Общая скорость перехода $R_R(j,k)$ переходов $j \to k$ через состояния *R* получается умножением начальной вероятности $f_0(\varepsilon_R)P_i(x)$ на скорость $R_R(j,k)$ и на дельта-функцию от энергии и последующего интегрирования по фазовым пространствам *x* и *y* (k = j+1). Используя приближение Борна-Оппенгеймера, можно показать, что выражение, определяющее энергию активации E_{ii} процессов перехо-

$$R_{R}(i,j)/P(i) = \int_{0}^{\infty} f_{0}(\varepsilon_{R})P_{i}(x_{ij})\Phi_{R}\sqrt{\varepsilon_{R}}d\varepsilon_{R}$$
$$\sim \exp(-E_{ij}^{a}/kT), \qquad (15)$$

где $\varepsilon_R^{1/2} d\varepsilon_R$ — плотность электронных состояний вблизи дна зоны проводимости. Используя приведенные выше соотношения для потенциала для случая сильного электрон-атомного взаимодействия, а также координат точек минимума и пересечения кривых адиабатического потенциала при разных значениях числа электронного заполнения, можно найти выражения для энергии активации E_{ij}^a переходов дефектов из зарядового состояния *i* в зарядовое состояние *j*:

$$E_{01}^{a} \approx A\left(l_{1}^{4} + tl_{1}^{3} - \eta l_{1}^{2} + \frac{\eta^{2}}{4} + \frac{\sqrt{2}}{4}\eta^{3/2}t\right), \qquad (16)$$

$$E_{12}^{a} \approx A\left(l_{2}^{4} - tl_{2}^{3} - \eta l_{2}^{2} + \frac{\eta^{2}}{6} + \frac{2^{1/3}}{4}t\eta^{2}q_{A}^{1/3}\right) + \frac{1}{4}tQ$$
$$- (E_{0} + U_{c}) + 3\frac{2^{1/3}}{8}Qq_{A}^{1/3} + \frac{2^{2/3}}{4}Aq_{A}^{2/3}\eta, \quad (17)$$

$$E_{10}^{a} \approx A \left(l_{1}^{4} - t l_{1}^{3} - \eta l_{1}^{2} + \frac{\eta^{2}}{6} + \frac{2^{1/3}}{4} \eta^{2} t q_{A}^{1/3} - \frac{2^{2/3}}{4} \eta q_{A}^{2/3} \right)$$

$$+2^{1/3}\frac{3}{8}Qq_A^{1/3} + \frac{1}{4}tQ - E_0,$$
(18)

$$E_{21}^{a} \approx A \left(l_{2}^{4} - t l_{2}^{3} - \eta l_{2}^{2} + \frac{\eta^{2}}{6} + \frac{2^{1/3}}{4} \eta^{2} t q_{A}^{1/3} - \frac{1}{2^{1/3}} \eta q_{A}^{2/3} \right) + 2^{2/3} \frac{3}{4} Q q_{A}^{1/3} - 2(E_{0} + U_{c}),$$
(19)

где $l_1 = Q/A$, $l_2 = (E_0 + U_c)/A$, $q_A = Q/A$. Переходы $2 \rightarrow 1$ и $1 \rightarrow 0$ связаны с выбросом электронов в зону проводимости и при малых значениях E_{21}^a и E_{10}^a будут определяться положением уровня Ферми. Полученные выражения для энергий активации процессов перехода между различными зарядовыми состояниями позволяют в принципе по экспериментальным данным определить параметры дефектов с сильным электрон-атомным взаимодействием. Обычно такими экспериментальными данными являются энергии активации, определяемые с помощью неравновесных экспериментов по ЭПР и DLTS (спектроскопия глубоких уровней). В случае же экспериментов, использующих равновесные электронные свойства дефектов, имеют значения уровни заполнения $E_{\text{th}}(j \rightarrow j+1) = E[j, x_{\min}(j)] - E[j+1, x_{\min}(j+1)],$ связываемые с тепловыми переходами, которые соответствуют изменению чисел заполнения $j + 1 \rightarrow j$, где $x_{\min}(j)$ — значение координаты, минимизирующее $E_i(x)$ при заданном числе заполнения *j*. В случае дефектов с сильным электрон-атомным взаимодействием имеем

$$E_{\rm th}(1 \to 2) = 0.72Qq_A^{1/3} - (E_0 + U_c) + \frac{1}{4}tQ + 0.233\eta Aq_A^{2/3} + 0.082\eta tAq_A^{1/3}, \quad (20)$$

151

$$E_{\rm th}(0 \to 1) = 0.47Qq_A^{1/3} - E_0 + \frac{tQ}{4} - 0.35A\eta^{3/2}t$$
$$- 0.4\eta Aq_A^{2/3} + 0.31\eta tAq_A^{1/3} - \frac{1}{12}A\eta^2.$$
(21)

Рассмотрим особенности равновесных электронных свойств бистабильных дефектов в случае слабого электрон-атомного взаимодействия, т. е. когда в процессе изменения числа заполнения топологический характер потенциала не изменяется. Полученные выражения (14) для вероятности заполнения позволяют получить соотношения между вероятностями заселения каждой из потенциальных ям, в результате чего можно найти выражение для концентрации, например, однократно отрицательно заряженных бистабильных центров:

$$N_B^- = \frac{nN_B}{n + Q_{B(2)}f}$$

где N_B — полная концентрация бистабильных дефектов, n — концентрация свободных электронов в зоне проводимости, $Q_{B(2)} = N_c \exp(-\varepsilon_2/kT)$, N_c — плотность состояний на дне зоны проводимости, ε_2 — уровень заполнения бистабильного дефекта во второй яме. Функция fописывает вклад другого метастабильного состояния и имеет вид

$$f = \left[1 + \exp\left(-\frac{\varepsilon_{12}^0}{kT}\right)\right] \left/ \left[1 + \exp\left(-\frac{\varepsilon_{12}^-}{kT}\right)\right].$$

Здесь $\varepsilon_{12}^0 = E_1^0 - E_2^0$ и $\varepsilon_{12}^- = E_1^- - E_2^-$ — разности в положениях минимумов двухъямного потенциала в нейтральном и однократно отрицательно заряженном состоянии. Таким образом, можно ввести эффективный уровень заполнения бистабильного дефекта

$$\varepsilon_{\text{eff}} = \varepsilon_2 - kT \ln f,$$
 (22)

включающий в себя параметры двухъямного потенциала и зависящий, вообще говоря, от температуры.

В заключение остановимся на радиационном дефекте в кремнии: атом бора B_i в межузельном положении в решетке кремния. Как известно [3], атом бора в межузельном положении может находиться в трех зарядовых состояниях: B^+ , B^0 и B^- . Переход из зарядового состояния B^0 в B^- характеризуется большой энергией релаксации решетки, что приводит к инверсии донорного и акцепторного уровней, т.е. этот дефект является центром с отрицательной корреляционной энергией. Наблюдаемый характер сигнала ЭПР состояния B^0 и изменения в конфигурации связей указывают на большую энергию решеточной релаксации, а микроскопические модели [3] подтверждают, что эта система должна

рассматриваться в тесной связи с феноменологической моделью дефектов, рассмотренной в предыдущих разделах. Согласно экспериментальным данным [3] имеем $E_{10}^{a} = (0.13 \pm 0.01)$ эВ и $E_{21}^{a} = (0.45 \pm 0.08)$ эВ. Этих данных недостаточно для однозначного определения всех параметров, фигурирующих в (16)–(21). Для этой цели требуется проведение специального эксперимента, как это было сделано, например, в работе [12], по определению уровней заполнения вакансии в p-Si. Тем не менее можно сделать оценки параметров и выяснить характер адиабатического потенциала. Фигурирующие здесь параметры имеют следующий порядок величин: $Q \approx 1 \div 3$ эВ, $A \approx 10 \div 30$ эВ. Величина E_0 имеет смысл затравочного энергетического уровня, на который переходят электроны в процессе изменения электронного числа заполнения. Эта энергия отсчитывается от потолка валентной зоны и, следовательно, имеет величину, по порядку равную ширине Еg запрещенной зоны полупроводника: $E_0 \leqslant E_g < Q$. Согласно имеющимся оценкам [7,13] $U_c \approx 0.2 \div 0.3$ эВ. Испытание различных численных значений параметров задачи показывает, что наилучшее соответствие известным экспериментальным значениям энергий активации получается при t = -0.01, $\sigma = 0.12, Q = 3.5, E_0 = 1.0, A = 15$ и $U_c = 0.2$. При этом находим, что $E_{21}^a = 0.42$ эВ, $E_{10}^a \approx 0.14$ эВ, $E_{01}^a \approx 0.08$ эВ и $E_{21}^a \approx 0.03$ эВ. Для эффективной корреляционной энергии получаем $U_{(eff)} \approx -0.31$ эВ. Найденные таким образом значения энергий активации E_{21}^{a} , E_{10}^{a} и E_{01}^{a} близки к экспериментальным [5,6], а эффективный уровень заполнения $E_{\rm occ} \approx 0.22$ эВ. На рисунке представлены вычисленные при найденных параметрах адиабатические потенциалы межузельного атома бора в различных зарядовых состояних. Характерными для найденных адиабатических потенциалов являются выплощенность потенциала в состоянии В⁺, присущая мягким конфигурациям в халькогенидных стеклообразных полупроводниках [8], и малая энергия (≈ 0.03 эВ) активации перехода B⁰ \rightarrow B⁻. Эти особенности потенциалов могут обусловливать особенности миграции межузельного атома бора, стимулированной рекомбинацией неосновных носителей заряда.

Список литературы

- [1] J.A. Van Vechten, C.D. Thurmond. Phys. Rev. B, **14**(8), 3551 (1976).
- [2] G.D. Watkins. Physica B, 117-118, 9 (1983).
- [3] G.d. Watkins, J.R. Troxell. Phys. Rev. Lett., 44(9), 593 (1980).
- [4] R.D. Harris, J.L. Newton, G.D. Watkins. Phys. Rev. B, 26(2), 1094 (1987).
- [5] K. Chantre, L.C. Kimerling. Proc. XIV Int. Conf of Defects in Semiconductors (Budapesht, 1988). [Mater. Sci. Forum, 38–41, 391 (1989)].
- [6] V.M. Siratskii, V.I. Shakhovtsov, V.L. Shindich, L.I. Shpinar, I.I. Yaskovets, 24(10), 1117 (1990).
- [7] C.A. Baraff, E.O. Kane, M. Shluter. Phys. Rev. B, 21(8), 3563 (1980).

- [8] М.И. Клингер. УФН, 145(1), 105 (1985).
- [9] M.I. Klinger. Phys. Report, 165(5-6), 275 (1988).
- [10] М.И. Клингер, В.Г. Карпов. ЖЭТФ, 82(5), 1687 (1982).
- [11] М.И. Клингер, Л.И. Шпинар, И.И. Ясковец. ФТТ, 28(2), 470 (1986).
- [12] В.В. Емцев, Т.В. Машовец, М.А. Маргарян. ФТП, 18(8), 1516 (1984).
- [13] Л.И. Шпинар, И.И. Ясковец, М.И. Клингер. ФТП, 24(7), 1153 (1990).

Редактор Т.А. Полянская

Electronic properties of defects with alternate valency in crystalline semiconductors

A.N. Kraichinskii, L.I. Shpinar, I.I. Yaskovets

Institute for Physics, 252650 Kiev, the Ukraine