Насыщенная скорость вертикального дрейфа электронов в политипах карбида кремния

© В.И. Санкин, А.А. Лепнева

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 8 октября 1998 г. Принята к печати 12 октября 1998 г.)

Исследованы вольт-амперные характеристики специально разработанных оригинальных трехэлектродных структур $n^+ - p - n^+$ на основе карбида кремния. Впервые определены насыщенные дрейфовые скорости электронов в направлении, параллельном оси кристалла, для ряда политипов карбида кремния (4H, 6H, 8H и 21R), величины которых составили $3.3 \cdot 10^6$, $2 \cdot 10^6$, 10^6 и $4 \cdot 10^3$ см/с соответственно. Полученные результаты интерпретируются в рамках представлений о минизонной электронной структуре, обусловленной естественной сверхрешеткой в SiC, и качественно удовлетворяют этим представлениям. Экспериментально подтверждена корреляция между дрейфовой скоростью и шириной первой минизоны в исследованных политипах.

Введение

Насыщенная дрейфовая скорость является важнейшей характеристикой полупроводникового кристалла. Она определяет частотные пределы полупроводниковых приборов и, следовательно, область их наиболее эффективного использования. Все это в полной мере относится и к карбид-кремниевым кристаллам. В настоящее время насыщенные дрейфовые скорости экспериментально определены для двух политипов SiC (4H и 6H) в направлении, перпендикулярном оси кристалла [1,2]. Согласно приведенным данным, значения скоростей совпадают в обоих политипах, что характерно и для многих других параметров в указанном кристаллографическом направлении. Однако для направления вдоль оси кристаллов этого, как правило, не бывает и полупроводниковые параметры различных политипов характеризуются резко выраженной спецификой. Как известно, ось кристалла является и осью естественной сверхрешетки (ЕСР) в некубических политипах SiC, за исключением 2H-SiC. Наличие минизонной структуры в электронном спектре политипов должно сказываться на значениях насыщенных скоростей, другими словами, должна наблюдаться корреляция между параметрами минизонного спектра и значением скорости. Такая зависимость между шириной первой минизоны и дрейфовой скоростью получена аналитически [3] и наблюдалась в различных объектах с искусственной сверхрешеткой, где при изменении ширины минизоны скорости изменялись от 106 см/с для относительно широкой минизоны [4] до значений менее чем 10⁴ см/с для узкой минизоны [5].

Ранее в серии работ [6–8] нами был представлен ряд эффектов в политипах SiC 4*H*, 6*H* и 8*H*, которые интерпретировались как блоховские осцилляции, электрофононные резонансы, полная локализация первой минизоны и межминизонное туннелирование. Согласно данной интерпретации эти эффекты являлись следствием и, значит, подтверждением минизонного характера электронного спектра, в свою очередь обусловленного ЕСР. Данные по скорости дрейфа явились бы еще одним аргументом, подтверждающим или отрицающим указанные представления. До сих пор такие данные в литературе отсутствуют. По-видимому, экспериментальные трудности, связанные с созданием микроструктур в направлении оси ЕСР, не позволяли решить такую задачу. Однако многие приборы, включая мощные высокочастотные транзисторы, разрабатываются именно для такой геометрии, поэтому решение этой проблемы приобретает еще и практическое значение.

Экспериментальный метод

Наш метод основывается на следующих соображениях. Если в экспериментальной структуре реализуется режим токов, ограниченных пространственным зарядом, и режим дрейфового тока, то это позволяет получить насыщенную дрейфовую скорость из анализа вольт-амперной характеристики (BAX). Такой режим для одномерной задачи описывается следующими уравнениями:

$$d^2 V/dX^2 = \rho/\varepsilon_s,\tag{1}$$

$$J = \rho v, \tag{2}$$

где V, X, J, ρ , ε_s , v — напряжение на структуре, координата вдоль направления тока, плотность тока, плотность объемного заряда, диэлектрическая константа полупроводника и дрейфовая скорость соответственно. Отсюда с помощью стандартных преобразований получаем следующее выражение для ВАХ такой структуры:

$$J = 2\varepsilon_s v V/w^2, \tag{3}$$

где *w* — ширина активной области структуры. Можно показать, что полученная ВАХ состоит из двух областей: первая область, где дрейфовая скорость зависит от поля, и вторая область, где дрейфовая скорость насыщается и не зависит от поля. Если принять, что в первой области скорость изменяется как

$$v = \mu V/w, \tag{4}$$

тогда ВАХ в этой области будет описываться следующим выражением:

$$J = 2\varepsilon_s \mu V^2 / w^3. \tag{5}$$

Здесь μ является подвижностью носителей заряда. Следует отметить, что подвижность в соотношении (4) может сама быть функцией поля, и тогда реальная ВАХ будет иметь зависимость, отличную от выражения (5).

ВАХ второй области, где v = const, будет описываться следующим выражением:

$$J = 2\varepsilon_s v_s V/w^2, \tag{6}$$

где *v_s* — насыщенная скорость. Таким образом, когда дрейфовая скорость насыщается, мы должны наблюдать линейную область ВАХ.

Экспериментальная структура

Для наших исследований была использована специально разработанная оригинальная трехэлектродная структура $n^+ - p - n^+$. Структура состоит из трех областей, которые в соответствии с транзисторной терминологией носят название эмиттера, базы и коллектора. Основой базы является выбранный для исследования политип карбида кремния, легированный глубоким акцептором (скандием) для получения минимальной концентрации свободных дырок (менее 10^{10} см⁻³ при 300 K). Очевидно, что с точки зрения создания эффективного транзистора данное решение является парадоксальным. Но, как будет показано далее, именно такая структура удовлетворяет требованиям, позволяющим решить поставленную задачу. Благодаря столь низкой концентрации свободных дырок в базе, практически при любом токе через базу концентрация инжектированных в базу электронов превысит концентрацию дырок, что обеспечивает в базе режим токов, ограниченных объемным зарядом.

Однако в связи с тем что *p*-область *p*-*n*-перехода легирована глубоким акцептором, в работе n^+ -*p*-перехода имеются некоторые особенности, на которых следует остановиться. Характеристические времена деионизации такой примеси в области объемного заряда при $p \simeq 10^{10}$ см⁻³ превышают 10^{-2} с. Это означает, что прямосмещенный эмиттерный n^+ -*p*-переход может быть открыт только постоянным напряжением или импульсами длительностью $t > 10^{-2}$ с. Однако после того как потенциальный барьер понижен, инжекция, которая является безынерционным процессом, может осуществляться короткими импульсами с длительностью $t < 10^{-6}$ с.

Рассмотрим теперь коллекторный $p-n^+$ -переход. При его обратном смещении установление электрического поля в базе определяется процессом ионизации глубокой акцепторной примеси, время которого также довольно велико. Поэтому, если обратное смещение осуществляется достаточно короткими импульсами, акцепторные уровни в базе остаются нейтральными, концентрация дырок, как было сказано, не превышает 10^{10} см⁻³, что соответствует экранированию электрического поля на длине более 10^{-1} см. Тогда при ширине базы 5 ÷ 10 мкм экранирование поля будет очень слабым и поле в базе можно считать практически однородным. Его величина будет определяться как F = V/w, где V — величина импульса напряжения, а w — ширина базовой области. Таким образом, движение электронов и ток в базе будут дрейфовыми, что в итоге обеспечит выполнение условий, при которых справедливы уравнения (1) и (2).

Данная методика существенно отличается от традиционно используемой методики насыщения токов, в которой измерения происходят в режиме очень большой плотности тока. Последнее вызывает необходимость принятия специальных мер для теплоотвода и высокого качества контактов. В предложенной методике указанные трудности удается избежать, поскольку плотности токов не превышают 10^2 A/cm^2 . Отличие состоит и в том, что электроны находятся не в *n*-, а в *p*-материале, хотя в данном случае концентрация примеси (порядка 10^{17} см^{-3}) примерно такая же, что и в *n*-материале, использованном в [1,2]. Последнее обстоятельство не столь важно, поскольку насыщенная скорость, являясь фундаментальной величиной, определяется не примесным рассеянием, а рассеянием на оптических фононах.

Принцип работы описанной структуры следующий. Обратное импульсное смещение V_p с периодом $t_p \simeq 10^{-7} \, {\rm c}$ прикладывается между коллектором и эмиттером. Прямое постоянное смещение V_b прикладывается к переходу эмиттер-база. Связанный с ним ток эмиттербаза практически не влияет на величину инжекции изза большого сопротивления *p*-области (10⁷-10⁸ Ом). Задача этого смещения — понизить высоту контактного барьера. Импульсное напряжение, приложенное между коллектором и эмиттером, обеспечивает однородное электрическое поле, которое распространяясь через базу, достигает открытого эмиттерного перехода и вызывает инжекцию. Ток инжекции растет вместе с величиной V_p, однако он может быть ограничен изменением V_b. Сопротивление базовой области при протекании импульсного тока уменьшается в 10³-10⁴ раз благодаря тому, что инжектированные в базу электроны подхватываются полем и, пролетая базу, достигают коллектора. Таким образом, в экспериментальной структуре реализован инжекционно-пролетный механизм протекания тока. Описанная электрическая схема соответствует транзистору, включенному с общим эмиттером.

Экспериментальные результаты и их обсуждение

На рис. 1–4 представлены ВАХ микроструктур политипов SiC 4H, 6H 8H и 21R. Все характеристики, за исключением ВАХ для 21R-SiC, состоят из нелинейной начальной области и последующего линейного участка. Согласно вышеприведенному выражению (5), нелинейная область должна соответствовать квадратичному закону изменения тока от напряжения $J \sim V^2$. Однако на реальной ВАХ ток изменяется по степенному закону

Рис. 1. Вольт-амперная характеристика трехэлектродной структуры на основе 4*H*-SiC.

Рис. 2. Вольт-амперная характеристика трехэлектродной структуры на основе 6*H*-SiC.

 $J \sim V^{1.6}$. Выше было высказано предположение о том, что квадратичный закон может не соблюдаться в случае, если подвижность носителей заряда зависит от поля. По-видимому, в нашем случае эта зависимость от поля выражается законом $\mu \sim V^{-0.4}$, что в результате и приводит к отклонению начального участка ВАХ от квадратичной зависимости.

Отсутствие нелинейного начального участка на ВАХ образца 21*R*-SiC обусловлено следующими причинами. Очень высокое внутреннее сопротивление данных структур, вследствие низких подвижностей электронов, не позволяло регистрировать нелинейный начальный участок ВАХ из-за низких значений токов. Поэтому полученная ВАХ представлена только линейным участком, снятым при достаточно больших полях, обеспечивающих минимальный для регистрации уровень токов. Анализ ВАХ позволил определить насыщенную

скорость дрейфа электронов в сверхрешетке 21*R*-SiC. Ее величина оказалась чрезвычайно низкой и составила $4 \cdot 10^3$ см/с, что является свидетельством высокой степени локализации вследствие очень узкой минизоны. Из рассматриваемых политипов 21*R*-SiC имеет наиболее сложную и длиннопериодную сверхрешетку. Последнее и обусловливает узкие минизоны.

В ряду политипов 4*H*, 6*H* и 8*H* величина периода сверхрешетки (СР) *d* возрастает пропорционально номеру политипа от 5 до 10 Å. Оценка ширины первой минизоны E_1 в политипе 6*H*-SiC была нами сделана на основе экспериментальных данных по исследованию ваннье-штарковской локализации, полученных в режиме полной локализации первой минизоны под действием электрического поля [8]. Исходя из соотношения $E_1 \sim k_d^2 = \pi^2/d^2$ можно оценить ширину первой минизоны политипов 4*H* и 8*H* с аналогичной СР. Согласно вышеуказанным значениям периодов СР, величина E_1 для 4*H*-SiC будет в 2.25 раза больше, а для 8*H*-SiC — примерно в 1.9 раза меньше, чем в 6*H*-SiC. Полученные значения насыщенных дрейфовых скоростей электронов составляют: для политипов 8*H* — 10⁶, для 6*H* — 2 · 10⁶

Рис. 3. Вольт-амперная характеристика трехэлектродной структуры на основе 8*H*-SiC.

Рис. 4. Вольт-амперная характеристика трехэлектродной структуры на основе 21*R*-SiC.

Физика и техника полупроводников, 1999, том 33, вып. 5

и для $4H - 3.3 \cdot 10^6$ см/с, что качественно подтверждает зависимость $v_s \sim 1/d$ [3]. Количественное совпадение этих данных с указанной зависимостью вряд ли возможно по двум причинам.

1. Упрощенность теоретических представлений, основанных на квадратичном законе дисперсии.

2. Экспериментальные погрешности, среди которых прежде всего следует отметить неточность в определении ширины базы w, достигающую величины $\pm (15-20)\%$, что приводит к величине погрешности в определении скорости, согласно (5), равной $\pm (30-50)\%$.

Пороговые поля, при которых происходит насыщение дрейфовых скоростей, для ряда политипов 4H, 6H и 8H составили $1.55 \cdot 10^5$, $1.4 \cdot 10^5$ и $1.35 \cdot 10^5$ В/см соответственно. Небольшое различие этих значений может являться результатом отличий объективных характеристик политипов, а также погрешности, о которой говорилось выше. Согласно [3] дрейфовая скорость в режиме минизонного транспорта описывается выражением

$$V_d = AFB^{-1}[1 + (F/B)^2]^{-1},$$
(7)

где $A = dE_1/2\hbar$, $B = \hbar/ed\tau$, d — постоянная ЕСР, E_1 — ширина первой минизоны, τ — время рассеяния. Ширина первой минизоны экспериментально определена для 6*H*-SiC и равна $E_1 = 256$ мэВ [8]. Постоянная ЕСР для 6*H*-SiC составляет d = 7.5 Å. Полученное из соотношения (4) время рассеяния $\tau = 5 \cdot 10^{-13}$ с согласуется с данными [7], рассчитанными из критерия для порогового поля блоховских осцилляций.

Из-за технической невозможности регистрировать область перехода от нелинейного к линейному участку на ВАХ политипа 21R о пороговом поле можно сказать, что оно не больше чем 1.6 · 10⁵ В/см. Среди рассмотренных политипов 21*R*-SiC характеризуется чрезвычайно низким значением насыщенной скорости дрейфа электронов, почти на 3 порядка уступающим значениям для остальных политипов. Это невозможно объяснить в рамках одного и того же механизма электронного транспорта. Если, согласно вышесказанному, скорости для политипов 4H, 6H, 8H неплохо объясняются минизонным транспортом, то величина скорости в 21R-SiC на 2 порядка меньше значения, обусловленного минизонным транспортом. Как отмечалось ранее, вследствие очень узкой минизоны, электронный спектр политипа 21R становится дискретным уже при достаточно низких полях $(1-2) \cdot 10^5$ В/см. Заметим, что для политипа 6*H* эти поля составляют минимум 6 · 10⁵, для 8*H* — около $4 \cdot 10^5$, а для 4H — около 10^6 В/см. По этой причине минизонный транспорт при таких полях в 21R-SiC не возможен и, по всей вероятности, в 21R-SiC реализуется перескоковый механизм электронного транспорта, чем и объясняется столь резкое падение дрейфовой скорости в этом политипе.

Суммируя полученные данные, можно сказать, что для политипов 4*H*, 6*H*, 8*H* наблюдается зависимость дрейфовой скорости от параметров ЕСР, которая находится в качественном и количественном соответствии с простой

теорией Есаки и Тсу [3]. Этот результат является также независимым подтверждением минизонного транспорта при полях порядка $(1-2) \cdot 10^5$ В/см в этих политипах, что совпадает с представлениями, изложенными нами ранее в [6–8].

Аномально низкое значение дрейфовой скорости в политипе 21*R*-SiC свидетельствует, что механизм дрейфа меняется при существенном изменении параметров минизонного спектра. В частности, сужение минизоны, как отмечалось в [6,7], приводит к выполнению условий сильной локализации в более слабых полях, последующему подавлению минизонного транспорта и вероятному переходу к механизмам туннельных перескоков между отдельными ячейками в ЕСР.

Данная работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (проект 97-02-18295) и программы МНТП "Физика твердотельных наноструктур" (проект 1-003).

Список литературы

- [1] W.V. Muench, E. Petterpaul. J. Appl. Phys., 48, 4823 (1977).
- [2] I.A. Khan, J.A. Cooper. Proc. ICSCIII-N'97 (Stockholm, 1997) p. 57.
- [3] L. Esaki, R. Tsu. IBM J. Res. Dev., 14, 61 (1970).
- [4] A. Sibile, J.F. Palmier, H. Wang, F. Mollot. Phys. Rev. Lett., 6, 52 (1990).
- [5] H.T. Grahn, K. von Klitzing, K. Ploog, G.H. Doler. Phys. Rev. B, 43, 12094 (1997).
- [6] В.И. Санкин, И.А. Столичнов. ФТП, 31, 489 (1996).
- [7] V.I. Sankin, A.A. Lepneva. Proc. Int. Symp. "Nanostructures: Physics and Technology" (St. Petersburg, Russia, 1997) p. 155.
- [8] В.И. Санкин, И.А. Столичнов. Письма ЖЭТФ, 64, 105 (1996).

Редактор Т.А. Полянская

Electron saturated velocity in silicon carbide polytypes for the vertical drift

V.I. Sankin, A.A. Lepneva

A.F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract I-V characteristics of the specially developed original three-terminal structures $n^+ - p - n^+$ based on silicon carbide have been investigated. For the first time the electron saturated drift velocity for the direction along the crystal axis have been determined. Its values obtained for a number of SiC polytypes 4*H* 6*H*, 8*H*, and 21*R* are equal to $3.3 \cdot 10^6$ cm/s, $2 \cdot 10^6$ cm/s, $1 \cdot 10^6$ cm/s, and $4 \cdot 10^3$ cm/s respectively. The results obtained are considered in a framework of the minizone electron spectrum model and satisfy the Esaki–Tsu theory. A correlation between the drift velocity and the first minizone width was confirmed in the experiment for the investigated polytypes.

Fax: (812) 515 67 47, (812) 247 10 17 E-mail: sankin@widegap.ioffe.rssi.ru Phone: (812) 515 91 85