Поляризационная фоточувствительность солнечных элементов ZnO/CdS/Cu(In,Ga)Se₂

© В.Ю. Рудь, Ю.В. Рудь*, Н.W. Schock+

Санкт-Петербургский государственный технический университет, 195257 Санкт-Петербург, Россия * Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия + Universitat Stuttgart, Institut fur Physikalische Elektronik, D-70569 Stuttgart, Germany (Получена 20 июля 1998 г. Принята к печате 28 июля 1998 г.)

> Рассмотрены результаты применения поляризационной спектроскопии фоточувствительности тонкопленочных солнечных элементов ZnO/CdS/Cu(In,Ga)Se₂ с различными толщинами слоев CdS (50 и 100 нм) и ZnO (500 и 1000 нм). Установлено, что коэффициент наведенного фотоплеохроизма понижается, а квантовая эффективность фотопреобразования солнечных элементов повышается с ростом толщины фронтального слоя. Экспериментальные угловые и спектральные зависимости наведенного фотоплеохроизма связываются с антиотражающими свойствами фронтальных слоев ZnO. Сделан вывод о возможностях использования поляризационной спектроскопии фоточувствительности для экспрессной диагностики готовых солнечных элементов и оптимизации технологии их получения.

Тройные полупроводниковые соединения и их твердые растворы с решеткой халькопирита все более интенсивно вовлекаются в исследования как материалы для фотовольтаических систем [1–5]. Наиболее эффективные солнечные элементы (\sim 18%) созданы из тонких пленок Cu(In,Ga)Se₂ (МИГС) [2]. По этой причине в последние годы усиливаются фундаментальные физико-технологические исследования тонкопленочных солнечных элементов (СЭ) из тройных соединений этого класса. В данной работе представлены результаты применения поляризационной фотоэлектрической спектроскопии к изучению солнечных элементов, содержащих слои МИГС в контакте с широкозонными слоями CdS и ZnO нескольких толщин.

1. В качестве подложек для осаждения слоев МИГС применялись покрытые молибденом стеклянные пластины толщиной до 0.5 мм. Нанесение пленок МИГС с толщинами до 2 мкм осуществлялось в системе с высоким вакуумом (~ 10⁻⁸ Тор) из индивидуальных для каждого из компонентов источников в едином процессе испарения на нагретые до температуры 600°С подложки. Состав полученных пленок контролировался посредством рентгеновской спектроскопии (EDX) и в изученных структурах был: Cu — 23.58, In — 20.06, Ga — 6.62, Se — 49.74 вес %. На поверхность МИГС последовательно методом термического испарения наносился слой CdS, а затем магнетронным распылением исходной мишени фронтальный слой ZnO. Толщина слоев CdS и ZnO в исследованных структурах дана в таблице. Помимо структур ZnO/CdS/МИГС на основе пленок МИГС вакуумным термическим испарением индия были созданы также поверхностно-барьерные структуры.

Полученные описанным способом структуры монтировались на столике Федорова СТФ-1, который позволял с точностью не хуже 1° изменять угловые координаты фронтальной плоскости структур относительно направления падающего на них излучения.

2. Основные фотоэлектрические параметры исследованных структур приведены в таблице. Из них видно, что изменения в толщинах слоев CdS (d_{CdS}) и ZnO (d_{ZnO}) не оказывают сильного влияния на величины напряжения холостого хода U_{OC} , фактора заполнения β и квантовой эффективности фотопреобразования *п*. Можно лишь отметить очевидную тенденцию улучшения этих параметров в результате повышения толщины фронтального покрытия. По-видимому, такое изменение можно связывать с увеличением эффекта просветления поверхности СЭ. Спектральные зависимости η для ряда структур ZnO/CdS/МИГС, а также созданной на основе таких же пленок МИГС поверхностно-барьерной структуры In/МИГС представлены на рис. 1. Из сопоставления спектров η следует, что длинноволновый край фоточувствительности во всех этих структурах одинаков. Он подчиняется экспоненциальному закону и может быть охарактеризован крутизной $s = \delta(\ln \eta)/(\hbar \omega)$. Из таблицы можно видеть, что крутизна длинноволнового края η для полученных структур высокая и соответствует прямым оптическим переходам в МИГС. Энергетическое

Фотоэлектрические свойства тонкопленочных структур на основе Cu(In,Ga)Se₂ при $T = 300 \,\mathrm{K}$

Тип структур № образца	d _{CdS} , нм	d _{ZnO} , нм	<i>U_{OC}</i> мВ	β	$\eta,\%$	<i>s</i> , эВ ⁻¹	δ _{1,2} , эВ	ћω _т , эВ	P ₁ ,%
In/МИГС MG-388	-	_	353.7	_	0.5	46	2.2	1.6	_
ZnO/CdS/МИГС MG-388-73	50	500	595.3	66	11.2	58	1.45	2.03	14
ZnO/CdS/МИГС MG-388-124	100	500	595.6	68	11.4	40	1.36	1.95	17
ZnO/CdS/МИГС MG-388-74	100	1000	619.7	79	12.2	46	1.34	1.64	11

Рис. 1. Спектральные зависимости относительной квантовой эффективности фотопреобразования поверхностно-барьерных структур In/МИГС (1 -образец MG-388) и СЭ ZnO/CdS/МИГС при T = 300 К в естественном свете (2 -образец MG-388-73, 3 -MG-388-124, 4 -MG-388-74).

положение излома в спектрах η исследованных структур, определяемое как точка перехода от экспоненциальной к параболической зависимости, как следует из рис. 1, меняется в пределах 1.15–1.18 эВ, что близко к значению ширины запрещенной зоны полученного состава твердого раствора МИГС. Поэтому длинноволновый край η можно приписать краю прямых межзонных переходов в пленках МИГС. Тогда наблюдаемые колебания в величине *s* могут быть обусловлены различиями в размытии краев свободных зон в МИГС электрическими полями заряженных дефектов решетки различного происхождения.

В широкой области энергий фотонов $\hbar \omega > 1.2$ эВ, как видно из рис. 1, квантовая эффективность фотопреобразования для сравниваемых структур продолжает увеличиваться, что свидетельствует об их достаточном совершенстве в отношении рекомбинации фотогенерированных носителей. Следует отметить, что в спектрах η СЭ в области 1.2–2.2 эВ наблюдаются сложные осцилляции фоточувствительности. Они наиболее четко проявились в структурах с $d_{ZnO} = 1000$ нм, однако из-за малой глубины модуляции однозначная интерпретация их природы пока невозможна.

Из рис. 1 можно видеть, что наиболее широкополосная фоточувствительность реализована в барьерах Шоттки

Физика и техника полупроводников, 1999, том 33, вып. 4

на основе МИГС. Полная ширина спектров η на полувысоте $\delta_{1/2}$ в них достигает 2.2 эВ, тогда как в СЭ она из-за влияния поглощения в слоях CdS (спад при $\hbar \omega > 2.4$ эВ) и ZnO (спад при $\hbar \omega > 3.1$ эВ) падает (см. таблицу).

Следует отметить, что спектральный контур η для барьера Шоттки и СЭ оказывается хорошо воспроизводимым при сканировании поверхности сплошных структур на площадях до 7.5 см² (диаметр светового зонда 0.2 мм), а также при создании сетки из 15 раздельных СЭ на поверхности нанесенной в едином технологическом цикле пленки МИГС или СЭ. Все это указывает на высокую локальную однородность в составе пленок МИГС, что соответствует данным рентгеновских исследований EDX.

3. Исследования фотоэлектрических свойств СЭ в линейно поляризованном излучении (ЛПИ) позволили установить, что при наклонном падении на их фронтальную плоскость возникает поляризационная фоточувствительность, о которой сообщено в [5]. При углах падения ЛПИ $\Theta > 0^{\circ}$ фототок короткого замыкания в зависимости от угла φ между вектором электрического поля световой волны Е и плоскостью падения излучения (ПП) следует периодической зависимости — закону Малюса [6]. При этом во всем спектральном диапазоне фоточувствительности СЭ выполняется соотношение i^{P} (Е || ПП) > i^{s} (Е \perp ПП), которое превращается в тождество $i^{P} > i^{s}$ при $\Theta = 0^{\circ}$, что связано с изотропным характером фотопроводимости из-за поликристалличности компонент тонкопленочных СЭ.

На рис. 2 и 3 представлены типичные угловые зависимости фототоков короткого замыкания и коэффициента наведенного фотоплеохроизма Р₁ для двух СЭ. Характер угловых зависимостей i^p и i^s, как видно из рис. 2 и 3, одинаков. Действительно, для p- и s-поляризаций с poстом Θ фототоки вначале увеличиваются, проходя через максимум, а затем начинают падать. Такой характер угловой зависимости фототока *i^p* связывается с устранением потерь *p*-волны на отражение и соответствует анализу процесса прохождения световой волной границы воздух-ZnO на основании соотношений Френеля [7]. Однако если подобный анализ для s-волны предсказывает монотонный спад i^s с ростом Θ , то в исследовавшихся СЭ мы видим, что вопреки этому анализу фототок i^s растет с увеличением $\Theta > 0^\circ$. Это обстоятельство дает основание по аналогии с $i^p(\Theta)$ связать рост i^s также с устранением потерь s-волны на отражение. Экспериментальные данные $i^p(\Theta)$ и $i^{s(\Theta)}$ показывают, что в СЭ с $d_{\rm ZnO}$ < 1000 нм отношение максимального значения фототока к фототоку при $\Theta = 0^{\circ} I_m^S / I_0^S$ падает по сравнению с СЭ с d_{ZnO} < 1000 нм (рис. 2 и 3, кривые 2). Поэтому величины отношений I_m^S/I_0^S и I_m^P/I_0^P можно принять за меру просветления СЭ.

Коэффициент наведенного фотоплеохроизма во всех исследованных СЭ, как видно из рис. 2 и 3, подчиняется параболическому закону $P_I \sim \Theta^2$, что соответствует [8]. При $\Theta = 0^\circ$ во всех СЭ $P_I = 0$. Это обусловлено маскировкой естественной оптической анизотропии компонент гетероструктур поликристалличностью слоев. Рост Θ

Рис. 2. Зависимости фототоков короткого замыкания $(1 - i^p, 2 - i^s)$ и коэффициента наведенного фотоплеохроизма (3, 3') от угла падения ЛПИ на плоскость ZnO структуры ZnO/CdS/МИГС при T = 300 К (образец — MG-388-74, элемент 2, $\lambda = 0.50$ мкм).

сопровождается монотонным увеличением фотоплеохроизма, значения которого для исследованных СЭ при $\Theta = 75^{\circ}$ отличаются между собой и при этом заполняют диапазон от 10 до 20% в спектральной области от 1 до З эВ. Если учесть, что во всех СЭ роль фронтального слоя выполняет одно и то же вещество — ZnO, то, принимая во внимание прямую связь P₁ с показателем преломления [8], следовало ожидать, что коэффициент наведенного наклонным падением ЛПИ фотоплеохроизма при Θ = const должен быть одинаковым во всех СЭ. Оценка на основании [8] по экспериментальным значениям Р_I дает величину показателя преломления n = 1.2 - 1.4, что ниже известного для ZnO значения n = 2 [9]. Наблюдаемое понижение экспериментальных величин P_I относительно ожидаемых на основании [8] с учетом показателя преломления для ZnO может быть следствием интерференции падающего ЛПИ в тонком слое ZnO. Такая закономерность ранее была отмечена для нескольких систем [9,10].

Рис. 3. Зависимости фототоков короткого замыкания $(1 - i^p, 2 - i^s)$ и коэффициента наведенного фотоплеохроизма (3) от угла падения ЛПИ на плоскость ZnO структуры ZnO/CdS/МИГС при T = 300 К (образец — MG-388-73, элемент 3, $\lambda = 0.60$ мкм).

На рис. 4 представлены спектральные зависимости коэффициента наведенного фотоплеохроизма СЭ с различными толщинами широкозонных слоев. Видно, что проявившаяся в угловых зависимостях $P_I(\Theta)$ чувствительность фотоплеохроизма к геометрическим параметрам СЭ сохраняется в достаточно широком спектральном диапазоне, оставаясь ниже теоретического значения P_{I} , оцененного из показателя преломления для ZnO. Колебания в экспериментальных значениях P_I и их слабая спектральная зависимость в области $\hbar\omega$ > 1.5 эВ могут быть обусловлены антиотражающими свойствами фронтального слоя СЭ. В таком случае проявившийся в спектрах P_I рост при $\hbar \omega < 1.5$ эВ соответствует выходу из области просветления. Если за меру просветления принять спад P₁, то из рис. 4 видно, что наиболее высокое просветление достигнуто в СЭ с $d_{ZnC} = 1000$ нм (кривая 3). Обнаруженные изменения Р₁ при сканировании поверхности СЭ (рис. 4, кривые 3 и 4) могут быть отражением локальных неоднородностей оптиче-

Рис. 4. Спектральные зависимости коэффициента наведенного фотоплеохроизма структур ZnO/CdS/МИГС при T = 300 К (1 — MG-388-73, элемент 2; 2 — MG-388-124, элемент 1; 3 — MG-388-74, элемент 1; 4 — MG-388-74, элемент 3. $\Theta = 75^{\circ}$).

ских параметров слоев ZnO. Все же следует подчеркнуть, что минимум P_I и соответственно максимум просветления и квантовой эффективности фотопреобразования достигнуты в СЭ с $d_{ZnO} = 1000$ нм (см. таблицу). При снижении толщины фронтального слоя оцениваемый из P_I эффект просветления ослабляется и в соответствии с этим наблюдается понижение η , тогда как изменения толщины слоев CdS в реализованном нами диапазоне существенно не влияют на фотоэлектрические параметры СЭ этого типа.

Следовательно, поляризационные исследования фоточувствительности тонкопленочных солнечных элементов на основе МИГС могут быть использованы для диагностики готовых СЭ и соответственно корректировки технологии получения самих фотопреобразователей.

Список литературы

- A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A.M. Herman. Appl. Phys. Lett., 65, 198 (1994).
- [2] L. Stolt, J. Hostrom, J. Kessler, M. Ruckh, K.-O. Velthaus, H.W. Schock. Appl. Phys. Lett., 62, 597 (1993).
- [3] J. Hodstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Harickos, M. Ruckh, H.W. Schock. *Proc.* 23rd *Photovoltaic Special. Conf.* (Lonisville, 1993).
- [4] M. Hornung, K.W. Benz, L. Margulis, D. Schmid, H.W. Schock. J. Cryst. Growth, 154, 315 (1995).
- [5] Т. Вальтер, В.Ю. Рудь, Ю.В. Рудь, Г.В. Шок. ФТП, 31, 806 (1997).
- [6] Ю.В. Рудь. Изв. вузов СССР. Физика, 29, 68 (1986).
- [7] Р. Аззам, М. Башара. Эллипсометрия и поляризованный свет (М., Мир, 1981).

Физика и техника полупроводников, 1999, том 33, вып. 4

- [8] G.A. Medvedkin, Yu.V. Rud'. Phys. St. Sol. (a), **67**, 333 (1981).
- [9] V.Yu. Rud', Yu.V. Rud', T. Walter, H.W. Schock. Proc. CTMC-11 (Salford, 1997) [Inst. Phys. Conf. Ser. No 152, 97 (1998)].
- [10] В.М. Ботнарюк, А.В. Коваль, В.Ю. Рудь, Ю.В. Рудь, А.В. Симашкевич, Д.А. Щербань. ФТП, **31**, 800 (1997).

Редактор В.В. Чалдышев

Polarization photosensitivity of ZnO/CdS/Cu(In,Ga)Se₂ solar cells

V.Yu. Rud', Yu/V/Rud'*, H.W. Schock+

Sanct Petersburg State Technical University, 195257 St. Petersburg, Russia * A.F. loffe Physicotechnical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia + Universitat Stuttgart, Institut fur Physikalische Elektronik, D-70569 Stuttgart, Germany