удк 621.315.592 Низкотемпературная релаксация твердого раствора железа в фосфиде галлия

© Е.С. Демидов, В.В. Карзанов, А.Б. Громогласова, О.Н. Морозкин

Нижегородский государственный университет им. Н.И. Лобачевского, 603600 Нижний Новгород, Россия

(Получена 3 августа 1998 г. Принята к печати 22 сентября 1998 г.)

Методами электонного парамагнитного резонанса и эффекта Холла изучались процессы низкотемпературной релаксации твердого раствора железа в фосфиде галлия, а также профили распределения парамагнитных центров железа в GaP: *А*-центра (g = 2.02) и *В*-центра (g = 2.133). Полученные данные согласуются с тем, что *А*-центры соответствуют атомам железа в положении замещения, т.е. $\operatorname{Fe}_{s}^{3+}(\operatorname{Ga})(3d^{5})$, в то время как *В*-центры — это межузельные нейтральные атомы железа, т.е. $\operatorname{Fe}_{i}^{0}(3d^{8})$. В процессе низкотемпературной релаксации твердого раствора GaP: Fe в интервале температур 293 \div 800 К *А*-центры устойчивы к отжигам, тогда как интенсивность спектра электронного парамагнитного резонанса от *B*-центра имеет сложную кинетику, которая качественно совпадает с кинетикой отжига парамагнитных центров $\operatorname{Fe}_{i}^{0}$ в кремнии.

Введение

В последнее время интерес к примесям переходных *d*-, *f*-элементов в полупроводниках связан с уникальными возможностями использования многозарядных глубоких центров, образуемых такими примесями, в квантоворазмерных структурах наноэлектроники. При этом из-за малых расстояний диффузионного перемещения дефектов особенно актуальным становится вопрос о низкотемпературной релаксации твердых растворов (НРТР) переходных элементов, которая будет определять временную стабильность характеристик полупроводниковых устройств, эксплуатируемых при температурах вблизи комнатной. НРТР наиболее полно исследована для 3д-примесей группы железа в кремнии, преимущественно растворяющихся в Si, занимая положения внедрения Ме_і с особенно высокой диффузионной подвижностью даже при комнатной температуре. Известно [1–4], что, например, для примеси хрома или железа после закалки образцов монокристаллов кремния от высоких температур диффузионного легирования оставшаяся после наиболее быстрого процесса объединения с вакансиями доля примеси участвует в комплексообразовании с мелкими акцепторами с постоянной времени $\tau = \tau_0 \exp(Q/kT)$, где $au_0 \approx 10^{-9}$ с, $Q \approx 0.85$ эВ. Выше первой точки перевала $T_1 \approx 400 \, {
m K}$ происходит, напротив, диссоциация этих комплексов, а при температурах выше второй точки перевала $T_2 \approx (450 \div 490)$ К превалирует распад твердого раствора 3*d*-примеси. Процессами как комплексообразования, так и распада твердого раствора в объеме кристалла можно управлять путем бомбардировки поверхности кремния ионами аргона с энергией ~40 кэВ [5-7] (эффект дальнодействия ионной имплантации).

В случае соединений $A^{III}B^V$ еще с пионерских работ 60-х годов Людвига и Вудбери [1] было известно, что в таких кристаллах 3*d*-элементы занимают положение замещения компоненты A, т.е. Me_s(A). Позднее для таких примесей была получена сравнительно большая энергия

а по

1

активации диффузии $Q \approx 2 \div 3$ эВ [8]. Однако появились свидетельства того, что доля примеси, сравнимая с долей Me_s(A), (на примере Mn в GaAs [9] и Fe в GaP [10,11]) может быть межузельной Me_i. В связи с этим следует ожидать заметную HPTP для переходных элементов в A^{III}B^V. Это косвенно подтверждается наблюдением [4,12] аналогичного вышеупомянутому в Si:Fe и Si:Cr эффекта дальнодействия при облучении ионами аргона в компенсированных переходными 3*d*-элементами полуизолирующих образцах арсенида галлия и фосфида индия.

В настоящей работе впервые исследовалась НРТР в $A^{III}B^V$ на примере кристаллов GaP: Fe с применением техники электронного парамагнитного резонанса (ЭПР). Такие кристаллы удобны тем, что при 77 К в них легко может наблюдаться ЭПР, где кроме спектра А с фактором g = 2.02, соответствующим ионам Fe³⁺_s(Ga) с конфигурацией $3d^5({}^6S_{5/2})$, наблюдается спектр *B* с g = 2.133 [13,14]. Последний, согласно выводам работы [10], где наблюдалось сверхтонкое расщепление линий В-спектра ЭПР, соответствует межузельным атомам Fe_i^0 с конфигурацией $3d^8({}^3S_1)$, как и для аналогичных центров в кремнии. Дополнительное подтверждение указанной природы В-спектра получено в работе [11] исходя из значительно большей диффузионной длины В-центров по сравнению с А-центрами и из анализа баланса концентраций В-центров и электронов зоны проводимости, который не соответствовал предполагаемой в [3] природе этих дефектов как $Fe_s^+(Ga)$ с конфигурацией $3d^7({}^4S_{3/2})$.

Эксперимент

Исследовались монокристаллы GaP толщиной 600 мкм с исходной концентрацией мелких доноров $2 \cdot 10^{17}$ см⁻³. Диффузия железа проводилась в вакуумированных кварцевых ампулах. Вместе с кристаллами GaP помещалась навеска Fe₂O₃ как источник железа, навеска красного

Рис. 1. Распределение по глубине *A*- и *B*-центров железа в кристалле фосфида галлия. 1 - A-центры $\operatorname{Fe}_{s}^{3+}(\operatorname{Ga})$; 2 - B-центры $\operatorname{Fe}_{i}^{0}$.

фосфора для стабилизации поверхности GaP и навеска металлического алюминия в качестве геттера неконтролируемых примесей [4]. Ампулы отжигались в течение 5 ч при 1250°С, затем вынимались из печи и быстро охлаждались на воздухе. НРТР изучалась при температурах 293 ÷ 800 К. Кристаллы выдерживались на воздухе при указанных температурах, затем на них производились измерения ЭПР, электропроводности и эффекта Холла на специальной установке с автоматическим поддержанием виртуального нуля, разработанной одним из соавторов [4].

Результаты и их обсуждение

На рис. 1 показано распределение по глубине *х* парамагнитных *А*- и *В*-центров в одном из кристаллов GaP. Как видно, замещающие галлий центры железа сосредоточены в приповерхностных слоях толщиной ~50 мкм с максимальной величиной концентрации (с учетом фона мелких доноров $5 \cdot 10^{17}$ см⁻³ в исходных кристаллах) $N \simeq 1.5 \cdot 10^{18}$ см⁻³, что близко к максимальной растворимости железа в GaAs, GaP [8]. Спад концентрации *А*-центров характеризуется коэффициентом диффузии $D \approx 2 \cdot 10^{-9}$ см²/с. Это значение находится в хорошем согласии с данными работы [15]: $D = 2.5 \cdot 10^{-9}$ см²/с при 1250°C.

В-центры, согласно рис. 1, сосредоточены в слое толщиной 300 мкм в середине кристалла с концентрацией $N \simeq 1.5 \cdot 10^{17} \text{ см}^{-3}$, если считать, что это спектр межузельных центров Fe⁰_i с заполнением *d*-оболочки 3*d*⁸ и спином S = 1, или $8 \cdot 10^{16} \text{ см}^{-3}$, если приписывать спектр замещающим галлий ионам Fe⁺_s(Ga) с 3*d*⁷-оболочкой и спином S = 3/2. Однако, согласно представлениям классической диффузии в кристалле конечной толщины [16], при $D = 2 \cdot 10^{-9}$ см²/с в середине кристалла концентрация замещающего галлий железа должна быть на 2 порядка меньше, чем показанная на рис. 1. Этот факт является дополнительным подтверждением принадлежности *B*-центров быстро диффундирующей межузельной компоненте железа Fe_i. Обращает на себя внимание полученная в наших кристаллах высокая растворимость межузельного железа, которая на порядок превышает величину максимальной растворимости межузельного железа в кремнии ~10¹⁶ см⁻³ [2,4].

Электрические измерения показали, что после диффузии железа у поверхности кристаллов в пределах ~5 мкм образуется проводящий слой *n*-типа с уровнем Ферми приблизительно $E_c - 0.15$ эВ. Далее до глубины залегания *В*-центров (~200 мкм) располагается очень высокоомная область полуизолирующего GaP с удельным сопротивлением свыше 10¹⁰ Ом · см. В слое В-центров толщиной 300 мкм наблюдался электронный тип проводимости с уровнем Ферми E_c – 0.34 эВ, если считать, что эффективная масса плотности состояний электронов зоны проводимости на 20% больше массы свободного электрона, как у тяжелых электронов в GaAs. Это означает, что предполагаемый по аналогии с Fe⁰_i в кремнии уровень аналогичного центра в фосфиде галлия располагается ниже, чем $E_c - 0.34$ эВ. Положение уровня Ферми в этом слое скорее контролируется другими центрами, чем межузельным железом. Согласно закономерностям в уровнях перезарядки, выведенным в [17], следует ожидать первый донорный уровень Fe⁰_i около $E_v + 1$ эВ, что почти на 1 эВ ниже уровня Ферми в *B*-слое. Этот уровень несколько выше первого акцепторного уровня 2+/3+ с энергией перезарядки $E_v + 0.7$ эВ для $Fe_s(Ga)$ в GaP [4,18]. По-видимому, на расстоянии от

Рис. 2. Температурная зависимость постоянной времени низкотемпературной релаксации твердого раствора *В*-центров железа в кристаллах фосфида галлия.

поверхности кристалла на рис. 1 между ~50 и ~200 мкм, где не проявляются *A*- и *B*-спектры, уровень Ферми располагается между E_v +0.7 эВ и E_v +1 эВ. Дальнейшие более детальные исследования электрических свойств кристаллов с неоднородным распределением железа, таким как на рис. 1, вероятно, позволят проверить это предположение.

Исследование НРТР в ЭПР измерениях показало, что в результате 12-летнего хранения при комнатной температуре у ряда кристаллов GaP: Fe интенсивность В-спектра уменьшилась на 10-50%. С ростом температуры интенсивность В-спектра уменьшается быстрее. При 723 К процесс замедляется, при 773 К происходило возрастание амплитуды В-спектра, а затем при более высоких температурах можно было снова наблюдать уменьшение интенсивности, как в области $T < 723 \, {\rm K}$. Амплитуда А-спектра практически не изменялась, что согласуется с ожидаемой термической устойчивостью состояния Fe³⁺_s(Ga). На рис. 2 показана температурная зависимость постоянной времени убыли числа Вцентров в приближении экспоненциального характера спада концентрации В-центров в низкотемпературной части процесса релаксации. Она описывается выражением $\tau = \tau_0 \exp(Q/kT)$ с параметрами $\tau_0 \approx 3 \cdot 10^{-2}$ с и энергией активации Q = 0.66 эВ.

Таким образом, получено еще одно подтверждение принадлежности *B*-спектра состоянию Fe_i^0 . Растворимость Fe_i^0 в GaP на порядок выше, чем в Si. Имеет место процесс комплексообразования Fe_i^0 в GaP с неизвестными *X*-дефектами, аналогичный процессу в кремнии (Fe⁰_i + мелкий акцептор). Как и в кремнии [2,4], наблюдался обратный процесс диссоциации комплексов. Более высокая температура перевала может свидетельствовать о большей, чем в кремнии (0.65 эВ), энергии связи комплекса. Энергия активации диффузии 0.66 эВ из рис. 2 меньше, чем в кремнии (Q = 0.85 эВ), что свидетельствует о меньших потенциальных барьерах между соседними межузельными положениями. Более сильный сдвиг НРТР к более высоким температурам, связанный с малой величиной τ_0 , обусловлен не малой концентрацией X-партнеров (в Si концентрация партнеров для Fe⁰_i такого же порядка), а меньшими возможностями для перескоков в соседние междоузлия и, по большей части, меньшим колебательным решеточным вкладом в энтропийный множитель τ_0 .

Авторы признательны проф. С.И. Рембезе и его коллегам, плодотворное обсуждение с которыми физики 3*d*-центров стимулировало выполнение настоящей работы.

Список литературы

- [1] Дж. Людвиг, Г. Вудбери. Электронный спиновый резонанс в полупроводниках (М., Мир, 1964).
- [2] L.S. Kimmerling, J.L. Benton. Physica, **116B**, 297 (1983).
- [3] С.И. Рембеза. Парамагнитный резонанс в полупроводниках (М., Металлургия, 1988).
- [4] Е.С. Демидов. Автореф. докт. дис. (Н.Новгород, 1994).
- [5] П.В. Павлов, Е.С. Демидов, Г.В. Зорина. ФТП, 21, 984 (1987).
- [6] Е.С. Демидов, В.В. Карзанов, П.В. Павлов. ФТП, 23, 548 (1989).
- [7] В.В. Карзанов, П.В. Павлов, Е.С. Демидов. ФТП, 23, 2064 (1989).
- [8] Д.Т. Джафаров. В сб.: Физика и материаловедение полупроводников с глубокими уровнями (М., Металлургия, 1987) с. 95.
- [9] SJ.C.H.M. Gisbergen, A.A. Ezhevskii, N.T. Son, T. Gregokievich, C.A.J. Ammerlaan. Phys. Rev., 49, 10 999 (1993).
- [10] В.Ф. Мастеров, С.И. Марков, Л.П. Пасечник, В.К. Соболевский. ФТП, 17, 1130 (1983).
- [11] Е.С. Демидов, А.А. Ежевский. ФТП, 19, 1629 (1985).
- [12] П.В. Павлов, Е.С. Демидов, В.В. Карзанов. ФТП, 26, 1118 (1992).
- [13] K. Suto, J. Nishisava. J. Phys. Soc. Japan., 26, 1556 (1969).
- [14] K. Suto, J. Nishisava. J. Appl. Phys., 43, 2247 (1972).
- [15] Ф.С. Шишияну, В.Г. Георгиу. ФТП, 11, 2188 (1976).
- [16] Б.И. Болтакс. Диффузия в полупроводниках (М., ФМЛ, 1961).
- [17] Е.С. Демидов. ФТТ, 34, 37 (1992).
- [18] Э.М. Омельяновский, В.И. Фистуль. Примеси переходных металлов в полупроводниках (М., Металлургия, 1983).

Редактор Л.В. Шаронова

The low-temperature relaxation of a solid solution of iron in gallium phosphide

E.S. Demidov, V.V. Karzanov, A.B. Gromoglasova, O.N. Morozkin

Nizhnii Novgorod State University, 603600 Nizhnii Novgorod, Russia

Abstract The low temperature relaxation processes of the solid solution of iron in gallium phosphide and distribution profiles of paramagnetic iron centers (*A*-centre, g = 2.02 and *B*-centre, g = 2.133) were studied by the electron spin resonance and Hall effect methods. The data accords with the fact that *A*-centres correspond to atoms of iron in the substitution site $Fe_s^{3+}(Ga)$ ($3d^5$), while *B*-centres are the interstitial neutral atoms of iron, Fe_i^0 ($3d^8$). At the low temperatures 293 ÷ 800 K *A*-centres are steady to annealings, whereas the *B*-centres electron spin resonance spectrum intensity has complex kinetics, which is qualitatively similar to the annealing kinetics of the centres Fe_i^0 in silicon.

E-mail: ett@phys.unn.runnet.ru (Demidov)