Механизмы излучательной рекомбинации в лазерах на основе двойных гетероструктур InGaAsSb/InAsSbP, работающих в диапазоне 3.0÷3.6 мкм

© М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 21 апреля 1998 г. Принята к печати 23 апреля 1998 г.)

Показано, что в зависимости от состава активной области и (или) ограничивающих слоев на гетерограницах могут быть реализованы гетеропереходы I или II типа. Это определяет различие в механизмах излучательной рекомбинации, температурных зависимостях длины волны излучения, типе поляризации излучения, вольтамперных характеристиках.

Диодные лазеры на основе узкозонных полупроводников A^{III}B^V, излучающие в средней инфракрасной (ИК) области спектра, представляют интерес из-за возможности их использования в молекулярной спектроскопии, контроле за загрязнением окружающей среды и волоконно-оптической связи, основанной на флюоритных стеклах с малыми оптическими потерями.

Данная работа является продолжением исследований мезаполосковых лазеров на основе двойных гетероструктур (ДГС) InGaAsSb/InAsSbP, излучающих в спектральном диапазоне 3.0÷3.6 мкм, выращенных на подложках *n*-InAs (111) [1,2]. В работе показано, что в зависимости от состава активной области и (или) ограничивающих слоев на гетерограницах могут быть реализованы гетеропереходы I или II типа. Это определяет различие в механизмах излучательной рекомбинации, температурных зависимостях энергии излучения, типе поляризации излучения, вольт-амперных характеристиках.

Изучаемые объекты и методики исследования

Двойные гетероструктуры выращивались методом жидкофазной эпитаксии на подложке *n*-InAs (111) А с концентрацией электронов $n = (1 \div 2) \cdot 10^{16}$ см⁻³ и состояли из трех слоев: двух широкозонных ограничивающих слоев InAs_{1-ν-w}Sb_νP_w (0.05 $\leq v \leq 0.10$; 0.09 $\leq w \leq 0.18$) *n*- и *p*-типа проводимости соответственно и активного слоя лазера *n*-In_{1-x}Ga_xAs_{1-y}Sb_y (0 $\leq x \leq 0.1$; 0 $\leq y \leq 0.1$). Толщины широкозонных слоев составляли 4÷6 мкм, активного слоя 1÷4 мкм. Мезаполосковые лазеры с шириной полоска 10 и 20 мкм и длиной резонатора 150÷600 мкм были изготовлены с использованием фотолитографии. Аналогичные структуры, выращенные на подложках InAs (100), были исследованы ранее в работах [3,4].

Фотолюминесценция при температуре $T = 77 \,\mathrm{K}$ и электролюминесценция в диапазоне $T = 77 \div 160 \,\mathrm{K}$ регистрировались охлаждаемым фотодиодом из InSb по схеме синхронного детектирования. Для возбуждения фотолюминесценции (ФЛ) использовался диодный лазер ЛПИ-14 (длина волны излучения $\lambda = 0.8 \,\mathrm{mkm}$,

мощность ~ 50 Вт, длительность импульса $\tau = 5$ мкс, частота f = 500 Гц), излучение которого направлялось на широкозонный эмиттер *P*-InAsSbP. Регистрация сигнала осуществлялась в геометрии "на отражение". Люминесценция анализировалась спектрометром ДФС-12. Измерения проводились в импульсном ($\tau = 5$ мкс, f = 500 Гц) и непрерывном режимах.

Составы слоев, определенные микрорентгеновским анализатором САМЕВАХ, и параметры исследуемых структур сведены в таблицу. Значения ширины запрещенной зоны E_g слоев определялись по максимумам спектров ФЛ (77 К) и совпадали с данными по расчету E_g как функции состава твердого раствора [5]. Разрывы зон на гетерограницах определялись интерполяцией по методике [6].

В таблице ДГС разделены на 3 группы в зависимости от материала активной области. 1-я группа объединяет структуры с активной областью из InAs, 2-я группа из InGaAsSb, 3-я группа — из InAsSb. В ДГС 1-й группы реализовывались гетеропереходы (ГП) II типа; в ДГС 2-й группы — ГП и I, и II типа, в ДГС 3-й группы — ГП I типа.

2. Экспериментальные результаты и их обсуждение

На рис. 1 приведены типичные спектры ФЛ при $T = 77 \,\mathrm{K}$ для 3 групп образцов. Коротковолновые спады интенсивности $I_{\rm PL}$ близки для всех 3 групп и описываются экспоненциальной зависимостью с энергией активации $\varepsilon_0 \sim kT \sim 10 \,\mathrm{myB}$, что говорит об однородности состава активных областей. Полуширины спектров имеют величину $\sim 25 \,\mathrm{myB}$, что свидетельствует о низкой концентрации электронов в активной области $(n \sim 5 \cdot 10^{16} \,\mathrm{cm}^{-3})$.

Лазеры имели пороговые токи $I_{\rm th}$ от 15 (плотность тока $j_{\rm th} = 200 \,{\rm A/cm^2}$) до 100 мА и выходную мощность до 2 мВт с грани (при токе $I = 20 \, I_{\rm th}$) при 77 К. Одномодовый режим генерации был реализован в интервале токов $(1\div 2) \, I_{\rm th}$. Минимальные пороговые токи наблюдались для длин резонатора $\sim 300 \,{\rm mkm}$. В

Группы образ- цов	Материал активной области	Номер струк- туры	Состав активной области		Состав ограничива- ющих слоев InAs _{1-v-w} Sb _v P _w		<i>Е</i> _g , мэВ актив- ная об- вающие		$\Delta E_{g},$ мэВ	$\Delta E_{c},$ мэВ	$\Delta E_{ u}$, мэВ	Тип ГП	Энергия лазерной моды, моВ	<i>I</i> _{th} , мА	Тип поля- ризации
			x	у	v	w	Jacib	Слои					M3D		
1	InAs	217	0	0	0.095	0.16	410	475	65	114	-49	II	405	45	TM
2	$In_{1-x}Ga_xAs_{1-y}Sb_y$	209 212 215	0.09	0.1	0.05	0.11	385	468	83	-32	115	Π	376 380 380	16 100 50	TE,TM
		208	0.1	0.07	0.07	0.1	363	441	80	44	36	Ι	361	50	TE
3	InAs _{1-y} Sb _y	213 214 216	0	0.075	0.07	0.1	355	443	88	50	38	Ι	356 360 355	50 115 100	TE

Параметры лазерных структур

Примечание. ΔE_g — разность значений ширины запрещенной зоны материалов ограничивающих и активного слоев; ΔE_c , ΔE_v — энергетические разрывы зоны проводимости и валентной зоны на гетерогранице.

лазерах с шириной полоска 10 мкм обычно наблюдалась продольная пространственная мода (*m* = 0).

На рис. 2 приведены типичные зависимости порогового тока I_{th} и дифференциальной квантовой эффективности η_{diff} от температуры (рис. 2, *a*), выходной мощности *P* от тока *I* (рис. 2, *c*) и спектры излучения при $I = I_{\text{th}}$, $2I_{\text{th}}$ (рис. 2, *b*).

Зависимость порогового тока от температуры аппроксимируется двумя экспоненциальными участками с характеристическими температурами $T_0 = 55 \div 88$ К в интервале $T = 77 \div 120$ К (область преобладания излучательной рекомбинации) и $T_0 = 16 \div 21$ К при T > 120 К, где преобладает безызлучательная оже-рекомбинация с участием спин-орбитально отщепленной зоны [7]. Подобные два участка имеет температурная зависимость дифференциальной квантовой эффективности. Отметим немонотонность изменения наклона кривой $\eta_{\text{diff}}(T)$ вбли-

Рис. 1. Спектры фотолюминесценции 3-х групп образцов при 77 К. Структуры: 217 (1), 209 (2), 216 (3) (см. таблицу).

зи $T = 120 \div 140$ К. В работе [8] показано, что в InAs и в близких к нему по составу твердых растворах велика вероятность внутризонного поглощения (ВП) излучения дырками с переходом их в спин-орбитально отщепленную зону, поскольку энергия спин-орбитального расщепления Δ близка к ширине запрещенной зоны E_g . В InAs и в близких к нему по составу твердых растворах вблизи 140 К реализуется ситуация, когда энергия кванта $h\nu \approx \Delta$ и ВП максимально. С повышением температуры, когда энергия кванта становится меньше Δ , ВП уменьшается, что приводит к появлению точки перегиба в температурной зависимости η_{diff} .

Ватт-амперная характеристика имеет сублинейный характер. С ростом тока дифференциальная квантовая эффективность уменьшается из-за разогрева лазера. Кроме того, ВП приводит к росту концентрации неравновесных носителей, что уменьшает коэффициент преломления активной области, приводит к ослаблению оптического ограничения и выходу излучения в пассивные области.

На рис. З приведены зависимости энергии квантов лазерного излучения $h\nu$ от температуры (*a*), степени поляризации α лазерной моды от тока (*b*), вольтамперная (*I*-*U*) характеристика (*c*) и зонная энергетическая диаграмма (*d*) для образцов 1-й группы, в которой реализуется гетеропереход II типа (см. таблицу).

Энергия квантов, испускаемых в лазерах 1-й группы, составляет 405÷408 мэВ (77 K), что меньше ширины запрещенной зоны InAs (410 мэВ) и больше энергии перехода зона–акцептор (395 мэВ). Близкое к нашим величинам значение было получено на аналогичной структуре при оптической накачке [9]. Необычной является независимость (или слабая зависимость) энергии лазерного пика от температуры. Излучение имеет ТМ-поляризацию. Степень поляризации $\alpha = (I_{\rm TE} - I_{\rm TM}/(I_{\rm TE} + I_{\rm TM}),$ где $I_{\rm TM}$ и $I_{\rm TE}$ — интенсивности излучения для ТМ-и ТЕ-поляризованного света, достигает 97%. Вольтамперная характеристика (рис. 3, *c*) в прямом направлении имеет *S*-образный изгиб.

Рис. 2. Зависимости дифференциальной квантовой эффективности η_{diff} и порогового тока I_{th} от температуры (*a*), спектры лазерного излучения при $I = I_{\text{th}} = 30 \text{ мA}$ (внизу) и $I = 2 I_{\text{th}} = 60 \text{ мA}$ (вверху) (*b*) и ватт-амперная (*P*–*I*) характеристика (*c*). Структура 209.

Рассмотрим зонную энергетическую диаграмму (рис. 3, *d*). На *N*–*n*-гетерогранице существуют самосогласованные карманы для дырок со стороны ишрокозонного слоя (*N*) и для электронов со стороны узкозонной активной области (*n*). Оценки показывают, что при одинаковой концентрации электронов в *N*- и *n*-слоях ($N \sim n \sim 5 \cdot 10^{16}$ см⁻³) и ширине карманов ~ 200 Å глубина кармана для электронов составляет $\sim (1/2)\Delta E_c$ и $\sim (1/2)\Delta E_v$ для дырок, т. е. 57 и 25 мэВ соответственно. Большой разрыв в зоне проводимости, ~ 114 мэВ, обес-

печивает хорошее электронное ограничение, что создает условия для квантования и излучательной рекомбинации электронов и дырок, находящихся на уровнях в карманах, с туннелированием носителей через гетерограницу.

Рис. 3. Зависимости энергии квантов излучения $h\nu$ от температуры T(a), степени поляризации излучения α от тока I(b), вольт-амперная (I-U) характеристика (c) и зонная энергетическая диаграмма (d) для образцов 1-й группы. Структура 217. E_F — уровень Ферми.

С учетом вышесказанного мы полагаем, что в лазерах 1-й группы рекомбинация происходит преимущественно вблизи N-n-гетероперехода II типа, а не в объеме активной области. Излучение создается в результате рекомбинации электронов и дырок, находящихся в самосогласованных квантовых колодцах по обе стороны гетерограницы, с туннелированием легких дырок в узкозонную область ДГС. В этом случае излучение имеет ТМ-поляризацию [10], а зависимость энергии лазерного кванта от температуры обусловлена конкуренцией температурного сужения запрещенной зоны и заполнением карманов, глубина которых определяется разрывами зон $\Delta E_c, \Delta E_v$, не зависящими от температуры.

На рис. 4 приведены зависимости энергии кванта излучения $h\nu$ от температуры (*a*), степени поляризации α от тока (*b*), вольт-амперная характеристика (*c*) и зонная энергетическая диаграмма (*d*) для образцов 2-й группы с активной областью InGaAsSb в случае реализации гетероперехода II типа.

Для этих лазеров, как и для лазеров 1-й группы, имеют место аномальная температурная зависимость и S-образная вольт-амперная характеристика. С повышением температуры наблюдался коротковолновый ("голубой") сдвиг энергии излучения, который, по-видимому, связан с заполнением карманов из-за увеличения пороговой концентрации носителей тока за счет возрастания потерь с ростом температуры.

В данных ДГС разрыв в валентной зоне значительно больше, чем в зоне проводимости, что обеспечивает хорошее ограничение для дырок. В большинстве лазеров наблюдалась ТЕ-поляризация лазерного излучения, поэтому, вероятно, основной вклад в излучение дает рекомбинация протуннелировавшего электрона с тяжелой дыркой (рис. 4, d).

В лазерах с ГП II типа наблюдался большой разброс степени поляризации (это видно из рис. 4, *b*, а для структур, представленных на рис. 3, просто не показано), что, вероятно, отражает влияние несовершенства гетерограницы и, соответственно, трансформации тяжелых дырок в легкие, либо сосуществование процессов рекомбинации протуннелировавшего электрона с тяжелой дыркой и протуннелировавшей легкой дырки с электроном.

В лазерах 2-й группы с активной областью $In_{0.9}Ga_{0.1}As_{0.93}Sb_{0.07}$ реализовывался гетеропереход I типа. Энергия лазерного кванта практически совпадает с величиной ширины запрещенной зоны активной области и уменьшается с температурой в соответствии с температурным сужением ширины запрещенной зоны ("красный" сдвиг). Излучение имеет ТЕ-поляризацию ($\alpha = 85\%$). Лазеры имеют обычную вольт-амперную характеристику (рис. 5).

В лазерах 3-й группы всегда реализуются гетеропереходы I типа. Вольт-амперная характеристика, температурная зависимость энергии кванта излучения $h\nu$, степень поляризации излучения α в зависимости от тока, а также зонная энергетическая диаграмма приведены на рис. 6. Энергия излучения $h\nu$ практически совпадает с

N-InAsSbP P-InAsSbP

Рис. 4. То же, что на рис. 3, для образцов 2-й группы в случае реализации ГП II типа. Структуры: *a* — 209 (*1*) и 215 (*2*); *b* — 212 (*1*) и 215 (*2*); *c* — 215.

величиной ширины запрещенной зоны активной области. Все зависимости имеют вид, обычный для излучательной рекомбинации в объеме активной области.

Рис. 5. То же, что на рис. 3,4, для образцов 2-й группы в случае реализации ГП I типа. Структура 208.

Рис. 6. То же, что на рис. 3–5, для образцов 3-й группы. Структуры 216 (*a*, *b*) и 213 (*c*).

Таким образом, в ДГС, где реализуются гетеропереходы I типа, имеет место межзонная излучательная рекомбинация в объеме активной области с характерными для нее "красным" температурным сдвигом энергии лазерного пика, ТЕ-поляризацией лазерного излучения, обычной вольт-амперной характеристикой.

В ДГС, где реализуются гетеропереходы II типа, излучательная рекомбинация происходит между электронами и дырками, расположенными в самосогласованных квантовых колодцах в узкой области вблизи гетерограницы при туннелировании одного из носителей заряда. Такая рекомбинация сопровождается "голубым" температурным сдвигом пика лазерного излучения, *S*-образной вольт-амперной характеристикой и типом поляризации, определяемым туннелирующей частицей.

В заключение авторы выражают благодарность Н.Д. Ильинской за техническую помощь, оказанную при выполнении работы.

Работа поддержана МНТП Министерства науки Российской Федерации "Оптика. Лазерная физика", проект № 4.14.

Список литературы

- H.B. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. Письма ЖТФ, 23, 72 (1997).
- [2] М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. Письма ЖТФ, 24, 12 (1998).
- [3] Б.Н. Баранов, Т.Н. Данилова, О.Г. Ершов, А.Н. Именков, В.В. Шерстнев, Ю.П. Яковлев. Письма ЖТФ, 18, 6 (1992).
- [4] Т.Н. Данилова, А.П. Данилова, О.Г. Ершов, А.Н. Именков, М.В. Степанов, В.В. Шерстнев, Ю.П. Яковлев. ФТП, 31, 1392 (1997).
- [5] T.H. Glisson, J.R. Hauser, M.A. Littlejohn, C.K. Williams. J. Electron. Mater., 7, 1 (1978).
- [6] S. Adachi. J. Appl. Phys., 58, R1 (1985).
- [7] М. Айдаралиев, Г.Г. Зегря, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, Н.М. Стусь, Г.Н. Талалакин. ФТП, 26, 246 (1992).
- [8] Н.А. Гунько, Г.Г. Зегря, Н.В. Зотова, З.Н. Соколова, Н.М. Стусь, В.Б. Халфин. ФТП, **31**, 1396 (1997).
- [9] О.Б. Гусев, М.С. Бреслер, Н.В. Зотова, Н.М. Стусь. ФТП, 26, 735 (1992).
- [10] О.В. Константинов, В.И. Перель, Б.В. Царенков. ФТП, 3, 1039 (1969).

Редактор Л.В. Шаронова

Radiation recombination in InGaAsSb/InAsSbP DH lasers operating in the $3.0 \div 3.6 \,\mu$ m spectral range

M. Aydaraliev, N.V. Zotova, S.A. Karandashev, B.A. Matveev, M.A. Remennyi, N.M. Stus', G.N. Talalakin

A.F.loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia

Abstract Peculiarities of the emission polarization, wavelength temperature shift and current–voltage characteristics for the mid-infrared InGaAsSb/InAsSbP diode lasers are discussed in connection with the existence of strong interface recombination.

Interface recombination transitions are explained in terms of type I or type II heterojunctions which take place in structures of different compositions.

Fax: (812) 2474324 E-mail: bmat@iropt3.ioffe.rssi.ru