Оптически активные слои кремния, легированного эрбием в процессе сублимационной молекулярно-лучевой эпитаксии

© А.Ю. Андреев, Б.А. Андреев, М.Н. Дроздов, В.П. Кузнецов*, З.Ф. Красильник, Ю.А. Карпов[†], Р.А. Рубцова*, М.В. Степихова, Е.А. Ускова*, В.Б. Шмагин, Н. Ellmer**, L. Palmetshofer**, К. Piplits^{††}, Н. Hutter^{††}

Институт физики микроструктур Российской академии наук,

603600 Нижний Новгород, Россия

* Научно-исследовательский физико-технический институт, Нижегородский государственный университет,

603600 Нижний Новгород, Россия

[†] Институт химических проблем микроэлектроники,

Москва, Россия

** Institute for Experimental Physics, University of Linz,

A-4040 Linz, Austria

^{††} Institute for Analytical Chemistry, Technical University of Vienna,

Vienna, Austria

(Получена 8 июля 1998 г. Принята к печати 5 августа 1998 г.)

Исследованы электрические, оптические и структурные свойства слоев Si:Er, полученных в процессе сублимационной молекулярно-лучевой эпитаксии. Содержание Er и O в выращенных при 400 \div 600°C слоях составляло до $5 \cdot 10^{18}$ и $4 \cdot 10^{19}$ см⁻³ соответственно. Концентрация электронов при 300 K составляла $\sim 10\%$ от полной концентрации эрбия, их подвижность до $550 \text{ см}^2/\text{B} \cdot \text{c}$. На всех структурах наблюдалась интенсивная фотолюминесценция на длине волны 1.537 мкм до $100 \div 140 \text{ K}$. Структура оптически активных центров, связанных с Er, зависела от условий роста слоев.

1. Введение

Кремний, легированный эрбием, привлекает значительное внимание в связи с тем, что для иона Er^{3+} 4f-переход ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ на длине волны 1.54 мкм лежит в спектральной области максимальной прозрачности и минимальной дисперсии кварцевого волокна. Для создания высокоэффективных светоизлучающих структур необходимо, чтобы концентрация эрбия превышала $10^{18} \,\mathrm{cm}^{-3}$ [1]. Перспективным методом получения слоев Si: Er является молекулярно-лучевая эпитаксия (МЛЭ), позволяющая выращивать высоколегированные структуры (в том числе многослойные) с малой плотностью структурных дефектов, излучающие на длине волны 1.54 мкм [2–4].

Одним из интересных и новых для данной проблемы вариантов МЛЭ является сублимационная молекулярнолучевая эпитаксия (СМЛЭ). Ее особенность — получение молекулярных потоков Si и легирующей примеси путем сублимации разогретого током кристаллического источника Si, легированного заданной примесью, в частности эрбием [5-7]. Прямой резистивный нагрев источника обеспечивает высокую чистоту молекулярных потоков, что позволяет получать кремниевые слои с минимальным числом дефектов и большим временем жизни неосновных носителей заряда [6,8]. Ранее нами было показано, что в процессе СМЛЭ можно воспроизводимо выращивать как однородно легированные совершенные монокристаллические слои Si с концентрацией электрически активных мелких примесей (P, As, Sb, B, Al) $2 \cdot 10^{13} \div 4 \cdot 10^{20} \,\mathrm{cm}^{-3}$, так и структуры с заданным сложным профилем легирования, в том числе с δ -легированными слоями [5,6]. Цель настоящей работы — получение методом СМЛЭ эффективно излучающих слоев Si:Ег и исследование их оптических и электрофизических характеристик. Представляет интерес исследование спектров фотолюминесценции (ФЛ) с высоким разрешением с целью идентификации оптически активных центров в СМЛЭ слоях, поскольку данные для МЛЭ слоев отсутствуют, а имеющиеся спектры слоев Si:Ег, выращенных химическим осаждением из газовой фазы (CVD) [9], существенно отличаются от таковых для имплантированного Si.

2. Эксперимент

Структуры Si: Er выращивались в вакууме при остаточном давлении $\sim 2 \cdot 10^{-7}$ мбар на подложках Si (100) *п*- и *р*-типа проводимости с удельным сопротивлением 0.005 и 10 Ом · см. В качестве сублимирующих источников Si и Er использовались кристаллические пластины, вырезанные из слитков Si: Er с содержанием Ег и О до $\sim 5 \cdot 10^{20}$ и $\sim 10^{19} \, {\rm cm}^{-3}$ соответственно. По данным инфракрасной спектроскопии фотопроводимости и поглощения основной электрически активной примесью, определявшей тип проводимости источников, являлся бор (концентрация $n \sim 10^{15} \, {\rm cm}^{-3}$). Источник и подложка нагревались резистивно. Температура роста варьировалась от 400 до 700°C, толщина слоев — от 0.2 до 3 мкм. Детали методики выращивания изложены в [6]. Дополнительный отжиг структур проводили в вакууме или в потоке водорода.

Распределение атомов примесей по толщине слоев измерялось методами вторично-ионной масс-спектрометрии (ВИМС) и спектроскопии обратного рассеяния Резерфорда (ОРР). Кристаллическое совершенство слоев исследовалось методом ОРР [10] и металлографическим методом. Концентрация носителей заряда и их распределение по толщине слоев определялись холловским и вольт-фарадным методами. Энергетические уровни в запрещенной зоне исследовались в диапазоне температур 50 ÷ 350 К методом релаксационной спектроскопии глубоких уровней (DLTS). Спектры фотолюминесценции исследовались на фурье-спектрометре "Bomem" DA3.36 (InSb-детектор) со спектральным разрешением до 0.5 см⁻¹. В качестве источника возбуждающего излучения использовали Kr⁺-лазер (длина волны излучения $\lambda = 647$ нм).

3. Результаты и обсуждение

Все выращенные слои Si: Ег имели *n*-тип проводимости независимо от параметров подложки и характера термообработки (с отжигом при 900°С или без него). Холловская концентрация электронов при 300 К в однородно легированных при 400 ÷ 600°С слоях составляла (2 ÷ 4) · 10¹⁷ см⁻³ (после отжига при 900°С), а подвижность 340 ÷ 550 см²/В · с. Содержание эрбия

Рис. 1. Распределение атомов эрбия и кислорода (данные ВИМС) по толщине *d* слоя Si, выращенного на подложке Si(100) при 600°С. Отсчет толщины — от свободной поверхности слоя.

Физика и техника полупроводников, 1999, том 33, вып. 2

и кислорода в слоях по данным ВИМС составляло $\sim 10^{18}$ и $\sim 10^{19}$ см⁻³ соответственно. Таким образом, концентрация электронов в слоях составляла $\sim 10\%$ от полной концентрации эрбия. Это значение степени электрической активации сравнимо с данными для имплантированных Er слоев Si с близким содержанием кислорода [11]. В селективно легированных слоях Si: Er распределения электрически активных центров (данные вольт-фарадных измерений) коррелировали с таковыми для полного числа атомов Er (данные ВИМС), что подтверждает связь возникающих в слое донорных центров с атомами эрбия.

На рис. 1 показаны ВИМС профили атомов Ег и О в однородно легированном при 600°С слое Si. Резкость концентрационного перехода пленка-подложка (концентрация Ег изменяется на 2 порядка на толщине ~35 нм) свидетельствует об отсутствии сегрегации Ег на поверхности роста, что согласуется с данными [2,3] для Si, полученного МЛЭ. С другой стороны, при температуре подложки 700°С проявлялась сегрегация Ег. Заметим, что кислород мог попасть в эпитаксиальный слой как из газовой среды внутри вакуумной камеры, так и из источника Si:Er.

Этот же слой был исследован методом ОРР. Минимумы выхода рассеянных ионов ${}^{4}\text{He}^{+}$ (энергия 400 кэВ) в режиме каналирования в направлениях оси $\langle 100 \rangle$ и плоскостей {110} и {100} составили 5, 27 и 35% соответственно, что свидетельствует о кристаллическом совершенстве слоя. Это подтверждают и данные металлографических исследований — в слоях Si: Ег толщиной ~3 мкм дефектов упаковки и дислокаций обнаружено не было.

На рис. 2 приведены спектры ФЛ при температуре T = 4.2 К двух структур с однородно легированными в процессе СМЛЭ при 400 (1) и 500°С (2, 3) слоями Si: Er. Во всех структурах наблюдается интенсивный спектр ФЛ вблизи 1.54 мкм, обусловленный Er, и сигнал экситонной люминесценции (на рис. 2 не показан). Спектр ФЛ образца, полученного при температуре 400°С, имеет сложную структуру даже после отжига. Спектр представлен интенсивными линиями с волновыми числами 6502.9 и 6429.2 см⁻¹ (рис. 2, спектр 1) и множеством предельно узких линий в диапазоне длин волн 6506.8÷6551.4 см⁻¹. Это свидетельствует о наличии нескольких оптически активных Ег-центров с низкой симметрией. По данным [12], линии в высокоэнергетичной области спектра могут быть связаны со сложными комплексами Er с кислородом.

Спектр ФЛ неотожженного образца (рис. 2, спектр 2), выращенного при 500°С, представлен множеством интенсивных узких линий в диапазоне $1.525 \div 1.57$ мкм (6557 ÷ 6369 см⁻¹). Существующие для имплантированных слоев данные позволяют выделить лишь одну серию линий, относящуюся к центру, обозначенному в [12] как Er–O1 : 6508, 6474 и 6441 см⁻¹. Отжиг образца в атмосфере водорода при 900°С в течение 30 мин приводит к формированию нового доминирующего Ег-центра, представленного серией узких линий 6502, 6443, 6393,

Рис. 2. Спектры фотолюминесценции (PL) слоев Si: Er, полученных СМЛЭ: 1 -однородно легированный слой, выращенный при 400°С и отожженный в вакууме при 900°С в течение 30 мин; 2 -однородно легированный слой, выращенный при 500°С, не отожженный; 3 -то же, что 2, но после отжига в течение 30 мин в атмосфере водорода при 900°С. Стрелками показаны серии линий, соответствующих оптически активным центрам, связанным с эрбием.

6342, 6337 и 6268 см⁻¹ (серия D — стрелки на спектре *3*), и уменьшению относительной интенсивности серии Er–O1 (отмечена звездочками). Заметим, что в данном спектре отсутствует так называемая дислокационная люминесценция, проявляющаяся в виде фонового сигнала в области 1.54 мкм, характерная для слоев с большим содержанием дефектов структуры.

По количеству линий, их положению и относительным интенсивностям серия D, отражающая структуру расщепления мультиплета ${}^{4}I_{15/2}$, не имеет аналога среди экспериментальных данных для хорошо исследованных ионно-имплантированных слоев Si и не может быть отнесена к какому-либо из идентифицированных в [12] оптических центров, связанных с Ег. С другой стороны,

Рис. 3. Спектр глубоких уровней в слое Si, однородно легированном Er до $5 \cdot 10^{17}$ см⁻³. Концентрация носителей при T = 300 К равна $8 \cdot 10^{16}$ см⁻³.

этот спектр весьма близок к экспериментальному спектру ФЛ, приведенному в [9] для полученного методом газофазной эпитаксии слоя Si:Er. Остается открытым вопрос лишь о природе широкого пика 6513 см⁻¹, наблюдаемого авторами [9]. В наших спектрах интенсивная линия на этой частоте отсутствует. Применение фурье-спектрометра и высокое качество слоев Si:Er позволили нам реализовать спектральное разрешение ≤ 1 см⁻¹ и наблюдать дублет 6337 и 6342 см⁻¹, предсказанный, но не обнаруженный экспериментально в [9], для иона Er³⁺ в состояниях с точечной симметрией D_{2d} и C_{3v} . Сопоставляя спектр 3 на рис. 2 с результатами расчета положения и относительных интенсивностей линий ФЛ, приведенными в [9], мы видим, что серия D наиболее близка к переходам, соответствующим центру с точечной симметрией D_{2d}. Вместе с тем, полученные спектры ФЛ и данные ОРР об угловых зависимостях рассеяния не определяют однозначно положение (замещение или внедрение) атомов Er в кристалле.

В слоях Si:Er, осажденных при более высокой температуре — 600° C и отожженных при 900° C в вакууме, наблюдался спектр ФЛ, близкий к показанному на рис. 2 (спектр 3). Спектры многослойных структур, состоящих из тонких сильно легированных слоев Si:Er, выращенных при пониженной температуре ($400 \div 500^{\circ}$ C), и толстых (много большей толщины) нелегированных слоев, осажденных при 700° C совпадали со спектром 3 на рис. 2 (независимо от отжига).

Температурные зависимости интенсивности ФЛ для однородно легированных при 400 и 600°С слоев Si: Ег показывают температурное гашение ФЛ при температурах 90 и 140 К соответственно. Для образца, выращенного при 600°С, процесс температурного гашения хорошо описывается двумя участками с энергиями активации ~ 13 и 60 мэВ. Первое значение (диапазон температур 30 ÷ 80 K) близко к соответствующим величинам как для имплантированных [12,13], так и для МЛЭ слоев Si:Er [14]. Для области температур T > 80 К в работе [12] приводились значения энергии активации 80 ÷ 100 мэВ, т.е. несколько большие 60 мэВ.

В настоящей работе впервые исследовались спектры DLTS глубоких уровней, обусловленных введением эрбия в СМЛЭ слои Si. Наблюдается серия линий с энергией ионизации $E_i = 0.15 \div 0.3$ эВ, так же как и для имплантированных структур (рис. 3). В то же время отсутствуют интенсивные линии в высокотемпературной части спектра ($E_i \ge 0.48$ эВ), характерные для имплантированных слоев Si:Er [12,15]. Поскольку в тех и других структурах наблюдается ФЛ, можно предположить, что уровни с $E_i \ge 0.48$ эВ не ответственны за процесс возбуждения ФЛ и соответствуют сложным дефектнопримесным комплексам, возникающим при имплантации Er.

4. Заключение

Методом СМЛЭ получены слои Si:Er, эффективно излучающие на длине волны 1.54 мкм. В структурах достигнут уровень легирования Er 5 · 10^{18} см⁻³, концентрация электронов при этом составила ~ 10% от полной концентрации эрбия, их подвижность $300 \div 550$ см²/В·с.

В спектрах ФЛ выделены: серия линий, принадлежащая известному для имплантированных Ег слоев центру Ег–O1, и новая серия интенсивных узких линий 6502, 6443, 6393, 6342, 6337 и 6268 см⁻¹, которая предположительно может быть отнесена к центру Ег в состоянии с точечной симметрией D_{2d} .

Авторы благодарны А.В. Мурелю за помощь в проведении DLTS-измерений.

Работа выполнена при поддержке РФФИ (гранты 98-02-16619, 96-02-19283, 96-03-32581) и МНТП "Фундаментальная спектроскопия" (проект 08.02.043).

Список литературы

- [1] Y.-H. Xie, E.A. Fitzgerald, Y.J. Mii. J. Appl. Phys., **70**, 3223 (1991).
- [2] J. Stimmer, A. Reittinger, J.F. Ntzel, G. Abstreiter, H. Holzbrecher, Ch. Buchal. Appl. Phys. Lett., 68, 3290 (1996).
- [3] R. Serna, Jung H. Shin, M. Lohmeier, E. Vlieg, A. Polman, P.F.A. Alkemade. J. Appl. Phys., 79, 2658 (1996).
- [4] W.-X. Ni, K.B. Joelsson, C.-X. Du, I.A. Buyanova, G. Pozina, W.M. Chen, G.V. Hansson, B. Monemar, J. Gardenas, B.G. Svensson. Appl. Phys. Lett., **70**, 3383 (1997).
- [5] V.P. Kuznetsov, A.Yu. Andreev, O.A. Kyznetsov, L.E. Nikolaeva, T.M. Zotova, N.V. Gudkova. Phys. St. Sol. (a), 127, 371 (1991).
- [6] В.П. Кузнецов, А.Ю. Андреев, Н.А. Алябина. Электронная промышленность, 9, 57 (1990).
- [7] N.G. Kalugin, V.P. Kuznetsov, A.Yu. Andreev, M.V. Stepikhova, R.A. Rubtsova, Z.F. Krasil'nik. Proc. Int. Simposium "Nanostructures: Physics and Technology" (St.Petersburg, 1997) p. 310.
- [8] Т.Н. Сергиевская, В.П. Кузнецов, В.Г. Васильев, В.А. Толомасов. Электрон. техн. Материалы, вып. 10, 58 (1980).
- [9] D.E. Wortman, C.A. Morrison, J.L. Bradshaw. J. Appl. Phys., 82, 2580 (1997).
- [10] H. Ellmer, W. Fischer, A. Klose, D. Semrad. Rev. Sci. Instrum., 67, 1794 (1996).
- [11] L. Palmetshofer, Yu. Suprun-Belevich, M. Stepikhova. Nucl. Instrum. Meth. B, 127/128, 479 (1997).
- [12] H. Przybylinska, W. Jantsch, Yu. Suprun-Belevitch, M. Stepikhova, L. Palmetshofer, G. Hendorfer, A. Kozanecki, R.J. Wilson. B.J. Sealy. Phys. Rev. B, 54, 2532 (1996).
- [13] S. Coffa, G.Franzo, F. Priolo, A. Polman, R. Serna. Phys. Rev. B, 49, 16313 (1994).
- [14] H. Efeoglu, J.H. Evans, T.E. Jackman, B. Hamilton, D.C. Houghton, J.M. Langer, A.R. Peaker, D. Perovic, I. Poole, N. Ravel, P. Hemment, C.W. Chan. Semicond. Sci. Technol., 8, 236 (1993).
- [15] J.L. Benton, J. Michel, L.C. Kimerling, D.C. Jacobson, Y.-H. Xie, D.J. Eaglesham, E.A. Fitzgerald, J.M. Poate. J. Appl. Phys., 70, 2667 (1991).

Редактор Л.В. Шаронова

Optically active layers of silicon doped with erbium during sublimational molecular beam epitaxy

A.Yu. Andreev, B.A. Andreev, M.N. Drozdov, V.P. Kuznetsov*, Z.F. Krasil'nik, Yu.A. Karpov[†], R.A. Rubtsova*, M.V. Stepikhova, E.A. Uskova*, V.B. Shmagin, H. Ellmer**, L. Palmetshofer**, K. Piplits^{††}, H. Hutter^{††}

Institute for Physics of Microstructures, Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia * Physical-Technical Research Institute, Nizhny Novgorod University, 603600 Nizhny Novgorod, Russia † Institute for Chemical Problems of Microelectronics, Moscow, Russia ** Institute for Experimental Physics, University of Linz,

** Institute for Experimental Physics, University of Linz, A-4040 Linz, Austria

^{††} Institute for Analytical Chemistry,

Technical University of Vienna,

Vienna, Austria

Abstract Si: Er layers grown by sublimation molecular beam epitaxy are characterized electrically, optically and structurally. The contents of Er and O in the layers grown at 400 \div 600°C is up to $5 \cdot 10^{18}$ and $4 \cdot 10^{19}$ cm⁻³ respectively. The Hall concentration of electrons at 300 K is about 10% of total Er contents, the mobility is up to $550 \text{ cm}^2/\text{V} \cdot \text{s}$. All samples exhibit photoluminescence at a wavelength of $1.537 \,\mu\text{m}$ up to $100 \div 140 \text{ K}$. The structure of optically active Er-related centers depends on growth conditions.

Fax: (8312) 675553 (Andreev) E-mail: andreev@ipm1.sci-nnov.ru (Andreev)