Влияние термического отжига на интенсивность полосы фотолюминесценции 1.54 мкм в легированном эрбием гидрогенизированном аморфном кремнии

© А.А. Андреев, В.Б. Воронков, В.Г. Голубев, А.В. Медведев, А.Б. Певцов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 28 апреля 1998 г. Принята к печати 28 апреля 1998 г.)

Легированные эрбием пленки *a*-Si: Н получены магнетронным распылением мишени Si-Er при температуре осаждения 200°С. Затем проведен кумулятивный термический отжиг. После отжига при 300°С в течение 15 мин в атмосфере азота обнаружено резкое возрастание (в ~ 50 раз) интенсивности фотолюминесценции на длине волны 1.54 мкм. При температуре отжига ≥ 500°С сигнал фотолюминесценции спадал практически до нуля. Влияние процессов термического отжига обсуждается в рамках модели частичной перестройки структурной сетки аморфных пленок *a*-Si(Er): H.

Введение

В последнее десятилетие в связи в развитием техники волоконно-оптической связи наблюдается устойчивый интерес к полупроводниковым материалам, легированным атомами редкоземельных металлов (РЗМ) [1]. Интерес обусловлен тем обстоятельством, что ионы РЗМ ведут себя в полупроводниках как эффективные внутрицентровые узкополосные излучатели инфракрасного диапазона. В частности, для трехвалентного иона эрбия (Er³⁺) излучательный оптический переход ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}(4f^{11})$ происходит на длине волны 1.54 мкм, соответствующей минимуму затухания и дисперсии в кварцевых световодах [2]. Главное достоинство легированных эрбием материалов состоит в том, что длина волны излучения слабо зависит от матрицы, в которую вводится эрбий, условий возбуждения и температуры. Сочетание этих важных для световой техники свойств с возможностью электронной накачки ионов РЗМ в полупроводниковых структурах открывает путь к созданию усилителей и генераторов высокомонохроматичного температурно-стабильного излучения.

Большое внимание в последние годы уделяется получению легированного эрбием монокристаллического Кремний является основным материакремния [3]. лом в полупроводниковой электронике, однако он не применяется в качестве оптоэлектронного материала в связи с непрямозонной энергетической структурой, препятствующей получению эффективной межзонной излучательной рекомбинации. Возможность получения светоизлучающих структур на основе кремния, легированного эрбием, открывает перспективу реализации оптоэлектронных интегральных схем полностью на базе кремниевой технологии. Вместе с тем на пути к созданию кремниевых оптоэлектронных приборов встает ряд проблем, главными из которых являются низкий предел достижимой концентрации оптически активных ионов эрбия и сильное температурное гашение интенсивности излучения на длине волны 1.54 мкм.

Сформулированные выше проблемы могут быть решены за счет использования легированного эрбием гидрогенизированного аморфного кремния *a*-Si(Er): H. Во-первых, электронные свойства такого материала удовлетворяют требованиям, предъявляемым к полупроводниковым приборам. Во-вторых, технология нанесения тонких пленок a-Si: Н хорошо отработана и совместима с кремниевой интегральной технологией. В-третьих, a-Si(Er): Н проявляет повышенную интенсивность и слабое температурное гашение фотолюминесценции (ФЛ) на длине волны 1.54 мкм по сравнению с кристаллическим кремнием [4,5]. Тем не менее многие проблемы оптимизации процесса получения эффективно излучающего a-Si(Er): Н пока не полностью решены. Одной из них является влияние термического отжига (ТО) пленок a-Si(Er): Н, проводимого с целью улучшения эмиссионных свойств ионов Er^{3+} .

Цель настоящей работы — исследование влияния ТО на интенсивность ФЛ на длине волны 1.54 мкм и протекающих при этом физико-химических процессов. Основные усилия были направлены на получение пленок, у которых осаждение и последующий отжиг, стимулирующий максимальное возрастание интенсивности ФЛ, происходят при $T \leq 300^{\circ}$ С. Это имеет принципиальное значение с точки зрения совместимости с интегральной кремниевой технологией.

Методика эксперимента

Пленки *a*-Si(Er): Н осаждались методом сораспыления мишеней Si и Er при одновременном разложении реактивного газа в плазме магнетронного разряда на постоянном токе. Реализована магнетронная система планарного типа с постоянными магнитами SmCo. Одна мишень диаметром 60 мм была выполнена из пластины Si *p*-типа проводимости с удельным сопротивлением $\rho = 10 \div 15 \, \text{OM} \cdot \text{см}$. Зона интенсивного распыления тщательно перекрывалась пластинами высокоомного собственного кремния с $\rho > 1.0 \, \text{кOM} \cdot \text{см}$. Такая

конструкция позволяла избежать возникновения поверхностных разрядов на мишени и обеспечивала устойчивость горения разряда. Ег-мишень в виде пластинок (одной или двух) размером 9 × 1 мм² размещалась в зоне интенсивного разряда в зазоре между пластинами высокоомного кремния в радиальном направлении. Расстояние мишень-подложка было 60 мм. Распыляющий газ Ar и реактивный газ с соотношением компонентов $[SiH_4]/[SiH_4 + H_2] = 20\%$ подавались из разных источников. Парциальное давление силано-водородной смеси в разрядной камере составляло $\sim 1.5 \cdot 10^{-3}$ Торр, давление Ar $\sim (8 \div 30) \cdot 10^{-3}$ Торр. Минимальный уровень содержания кислорода определялся натеканием вакуумной системы. Разрядный ток выбирался вблизи порога устойчивого горения и варьировался с пределах 15 ÷ 30 мА. Температура подложки была 200°С. В качестве подложек использовались бесщелочное стекло, плавленный кварц и кристаллический кремний. Толщина осажденных слоев составляла 0.5 ÷ 1.0 мкм.

Свойства пленок контролировались по совокупности следующих оптических параметров: положение по энергии и крутизна края оптического поглощения, характеристическая энергия Урбаха. За счет варьирования условий технологического процесса и соотношения площадей эрбиевых пластин и кремниевой мишени удалось получить пленки с набором параметров, близких к стандартным характеристикам *a*-Si:H: $E_g = 1.7$ эВ, $B = 700 \text{ см}^{-1} \cdot \text{эB}^{-1/2}$, $E_0 = 60 \text{ мэB}$. Здесь E_g — оптическая ширина запрещенного зазора, определенная по процедуре Тауца, B — наклон спектральной зависимости коэффициента поглощения в координатах Тауца, E_0 — параметр Урбаха.

Аморфность пленок контролировалась по спектрам рамановского рассеяния. Как в свежеприготовленных, так и в подвергнутых термической обработке слоях наблюдалась только широкая полоса, центрированная вблизи 480 см⁻¹, характерная для чисто аморфной структуры пленок.

Концентрация примесей в пленках определялась методом ионной масс-спектроскопии (Secondary Ion Mass Spectroscopy — SIMS) и составляла для $\text{Er} \sim 5 \cdot 10^{20} \text{ см}^{-3}$. Концентрация кислорода, обусловленная естественным натеканием в реактор, также не превышала $5 \cdot 10^{20} \text{ см}^{-3}$.

Исследования ФЛ проводились при возбуждении Ar⁺-лазером на длине волны 488 нм при азотной и комнатной температурах. Приемником служил охлаждаемый германиевый фотодиод. Измерительный тракт состоял из высокочувствительного узкополосного усилителя, фазового детектора и ЭВМ.

Результаты и обсуждение

В свежеприготовленных образцах амплитуда пика ФЛ $\lambda = 1.54$ мкм превышала уровень шумов не более чем в 4 ÷ 5 раз. Важно отметить, что варьирование набора технологических параметров не приводило к радикальным изменениям в величине сигнала ФЛ. Однако было замечено, что снижение скорости роста слоев до значений меньше 1 Å/s вызывает тенденцию к увеличению интенсивности ФЛ. Возможной причиной подобного поведения является отсутствие расновенсия в исследуемой системе. В связи с этим была проведена дополнительная технологическая операция ТО пленок. Отжиг осуществлялся методом ступенчатого подъема температуры (кумулятивный процесс) в атмосфере азота при нормальном давлении. На первой ступени температура была выбрана равной $T_a = 300^{\circ}$ С и длительность 15 мин. Затем образец охлаждался до комнатной температуры и отжигался повторно при $T_a = 400^{\circ}$ С в течение 15 мин. Температуры на следующих ступенях были $T_a = 500, 600$ и 700°C.

Результаты влияния ТО на ФЛ приведены на рис. 1. Уже первая ступень отжига приводит к резкому, приблизительно 50-кратному, увеличение интенсивности ФЛ (I_{PL}). Однако следующая ступень отжига при $T_a = 400^{\circ}$ С дает уменьшение интенсивности пика ФЛ. Третья ступень ТО ведет к дальнейшему падению сигнала или к его полному исчезновению в зависимости от особенностей первоначально выбранного технологического режима осаждения. Подобное поведение ФЛ в *a*-Si(Er): Н было установлено ранее в [6–8]. Однако в [6] объектом исследования был *a*-Si: Н, полученный методом плазмохимического газофазного осаждения (Plasma Enhanced

Рис. 1. Спектры фотолюминесценции *a*-Si(Er): Н при температуре T = 77 К в зависимости от температуры кумулятивного отжига. *a* — свежеприготовленный образец, *b* — отжиг при $T_a = 300^{\circ}$ C, *c* — отжиг при $T_a = 300^{\circ}$ C. Пояснения к процедуре отжига см. в тексте.

Рис. 2. Нормированная интенсивность фотолюминесценции при $\lambda = 1.54$ мкм в зависимости от температуры отжига: *а* — данные настоящей работы, температура измерения T = 77 K; *b* — данные [6], T = 295 K; *c* — данные [7], T = 77 K.

Сhemical Vapor Deposition — РЕСVD) и легированный за счет имплантации ионов эрбия. Кумулятивный отжиг осуществлялся в течение 2 ч. В [7,8] изучался *a*-Si(Er): H, полученный радиочастотным катодным сораспылением Si и Er в атмосфере аргона и водорода. Кумулятивный отжиг проводился с атмосфере аргона в течение 15 мин. Как известно из практики осаждения *a*-Si: H, смена технологии приводит к получению несколько различающих-ся структурных модификаций *a*-Si: H. Соответственно, появляется разница в поведении ФЛ в зависимости от температуры отжига (рис. 2). В нашем случае обращает на себя внимание критичность подбора температуры отжига, тогда как в [6] температурный интервал эффективного отжига более размыт, а в [7] сдвинут в область более высоких температур, ~ 500°C.

Отметим также, что эффективная ФЛ наблюдалась после отжига при $T_a = 300^{\circ}$ С в *a*-Si(Er): H, полученном стандартным методом PECVD с использованием фторсодержащего металлорганического комплекса Er(HFA)₃·DME (HFA=CF₃C(O)CHC(O)CF₃, DME=CH₃OCH₂CH₂OCH₃) [9,10].

Физика процессов структурной перестройки, происходящих при ТО, представляется достаточно понятной. Установлено, что в диапазоне температур 300 ÷ 400°С в структурной сетке a-Si: Н происходит разрыв связей Si-H-Si, высвобождение водорода, его эффективная диффузия и частичное выделение [11,12]. Структурная сетка при этом получает дополнительную степень свободы для частичной реорганизации. Если первоначально структура недостаточно близка к равновесной, например, в силу условий приготовления, то структурная перестройка в процессе ТО приводит к более полному насыщению химических связей для всех составляющих компонентов решетки, в том числе эрбия и остаточного кислорода. Известно [2,3], что эрбий в кремнии может находиться как в кремниевом (Si(12)), так и в кислородном (O(6))окружении. Однако только в последнем случае конфигурация окружения эрбия оптимальна для формирования оптически активного центра, эффективно излучающего на длине волны 1.54 мкм. В свете сказанного, для объяснения резкого увеличения интенсивности ФЛ можно предположить, что потенциальная лабильность структурной сетки a-Si: Н способствует как уменьшению концентрации безызлучательных центров рекомбинации, так и изменению ближайшего окружения эрбия. При этом важную роль может играть свойство эрбия быть геттером по отношению к кислороду. Другими словами, для эрбия связь Er-O может оказаться более предпочтительной, чем связь Er-Si. Эффективно диффундирующий при 300°C атомарно ионизированный водород, наполняющий структурную сетку *a*-Si(Er): Н в концентрации до 10%, может являться катализатором этого процесса. То обстоятельство, что область структурной перестройки при отжиге в нашем случае достаточно узка по температуре, свидетельствует об узости распределения высот диффузионных барьеров для подвижных примесей. Этот вывод подтверждается малой шириной пика ФЛ. В имплантированных образцах [6] набор структурных дефектов, по всей видимости, более многообразен, и поэтому интервал оптимального ТО шире и сдвинут в область более высоких температур. Что касается существенно неравновесного метода высокочастотного сораспыления [7,8], то в этом случае доминирующим видом связей являются более сильные пассивирующие связи Si-H, температура разрыва которых соответствует примерно 500°С. Падение интенсивности ФЛ в наших пленках практически до нулевого значения при $T \ge 500^{\circ}$ C объясняется потерей материалом водорода, что приводит к высокой концентрации оборванных связей, являющихся центрами безызлучательной рекомбинации электронно-дырочных пар, создаваемых источником накачки.

Отметим также, что проблема получения оптимальной концентрации оптически активных ионов Er^{3+} может быть решена только в сочетании с дозированным подлегированием пленок кислородом. В наших пленках концентрации эрбия и водорода приблизительно равны, тогда как оптимальное лигандное окружение для ионов эрбия, как уже упоминалось, состоит из 6 атомов кислорода.

Заключение

Таким образом, в работе показано, что излучающие на длине волны $\lambda = 1.54$ мкм пленки *a*-Si(Er): H с оптическими параметрами, близкими к стандартному гидрогенизированному аморфному кремнию, могут быть получены магнетронным сораспылением Si и Er в аргоносилановой атмосфере в условиях сильного разбавления силана водородом. Обнаружено, что интенсивность ФЛ возрастала примерно в 50 раз после термического отжига пленок. Следует отметить, что как осаждение, так и оптимальный термический отжиг проводились при достаточно низких температурах — 200 и 300°C соответственно, что делает возможным совмещение развитого в работе технологического процесса со стандартной технологией кремниевой электроники. Предложен механизм структурной перестройки аморфной сетки a-Si: Н в процессе отжига, возможно, ответственный за наблюдаемое увеличение интенсивности фотолюминесценции.

Работа выполнялась при поддержке РФФИ (проект № 98-02-17350).

Список литературы

- Rare Earth Doped Semiconductor II, ed by S. Coffa, A. Polman, and R.N. Schwartz [Mater. Res. Soc. Symp. Proc., 422, 1(Pittsburgh, DA, 1996)].
- [2] A. Polman. J. Appl. Phys., 82, 1 (1997).
- [3] Н.А. Соболев. ФТП, **29**, 1153 (1995).
- [4] M.S. Bresler, O.B. Gusev, V.Kh. Kudoyarova, A.N. Kuznetsov, P.E.Pak, E.I. Terukov, I.N. Yassievich, B.P. Zaharchenya. Appl. Phys. Lett., 67, 3599 (1995).
- [5] Е.И. Теруков, В.Х. Кудоярова, М.М. Мездрогина, В.Г. Голубев. ФТП, **30**, 820 (1996).
- [6] J.H. Shin, R. Serna, G.N. Hoven, A. Polman, W.G.J.H.M. Sark, A.M. Vredenberg. Appl. Phys. Lett. 68, 997 (1996).
- [7] A.R. Zanatta, L.A.O. Nunes. Appl. Phys. Lett., 70, 511 (1997).
- [8] A.R. Zanatta, L.A.O. Nunes. Appl. Phys. Lett., 71, 3679 (1997).
- [9] В.Б. Воронков, В.Г. Голубев, Н.И. Горшков, А.В. Медведев, А.Б. Певцов, Д.Н. Суглобов, Н.А. Феоктистов. Письма ЖТФ, 24, вып. 13, 8 (1998).
- [10] В.Б. Воронков, В.Г. Голубев, Н.И. Горшков, А.В. Медведев, А.Б. Певцов, Д.Н. Суглобов, Н.А. Феоктистов. ФТТ, 40, 1433 (1998).
- [11] W. Beyer. In: *Tetrahedally–Bonded Amorphous Semiconductors*, ed. by D. Adler and H. Fritzsche (Plenum Press, N.Y., 1985) p. 129.
- [12] W.B. Jackson, S.B. Zhang. In: *Transport, Correlation and Structural Defects*, ed by H. Fritzsche (World Scientific Publishing Company, Singapore, 1990) p. 63.

Редактор Л.В. Шаронова

Effect of thermal annealing on 1.54 μ m photoluminescence intensity from erbium–doped hydrogenated amorphous silicon

A.A. Andreev, V.G. Golubev, A.V. Medvedev, A.B. Pevtsov, V.B. Voronkov

A.F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Erbium-doped *a*-Si: H films have been prepared by DC magnetron sputtering of Er–Si target at the deposition temperature 200°C. Then a cumulative thermal annealing was carried out. It was found that 1.54 μ m photoluminescence intensity enhanced dramatically (by a factor of 50) after the thermal annealing at 300°C for 15 min in nitrogen atmosphere. No erbium–related photoluminescence was observed after the thermal annealing at $T \ge 500^{\circ}$ C. The effect of the thermal annealing is discussed within the framework of a partial rearrangement of *a*-Si: H amorphous film structural network.