Экспериментальное исследование поперечного эффекта Нернста–Эттингсгаузена и термоэдс при большом градиенте температуры

© М.М. Гаджиалиев, В.А. Елизаров

Институт физики Дагестанского научного центра Российской академии наук, 367003 Махачкала, Россия

(Получена 19 марта 1998 г. Принята к печати 20 апреля 1998 г.)

Исследованы поперечный эффект Нернста–Эттингсгаузена и термоэдс компенсированного германия с концентрацией электронов $n = 2 \cdot 10^{11} \text{ см}^{-3}$ в зависимости от градиента температуры в диапазоне $(2 \div 1.5 \cdot 10^3) \text{ K} \cdot \text{см}^{-1}$ при средней температуре 350 К. Показано, что механизм рассеяния носителей заряда не зависит от величины градиента температуры, а термоэдс Бенедикса обусловлена разогревом носителей тока тепловым полем.

В работе [1] показано, что исследование явлений переноса при большом градиенте температуры (БГТ) позволяет учитывать вклад возникающих при этом неравновесных неосновных носителей тока. Под БГТ понимается градиент температуры, при котором выполняется условие $L_D > L_T$, где L_D — диффузионная длина неосновных носителей тока, $L_T = T / \nabla T$ — приведенная длина. Если длина минимального участка образца Δx , концы которого имеют разные температуры $(T_1 \neq T_2)$, сравнима с величиной L_D , то условие $L_D > L_T$ переходит в неравенство $\Delta T > T$. Последнее неравенство условие при котором система электронов находится вдали от термодинамического равновесия с решеткой [2]. Из условия $L_D > L_T$ следует, что величина БГТ зависит от материала, в объеме которого создается градиент температуры.

Известно, что признаком наличия БГТ является возникновение термоэс Бенедикса, обусловленной неосновными, неравновесными носителями тока [3,4]. В работе [4] показано, что неравенство $L_D > L_T$ выполняется в германии и, следовательно, возникает термоэдс Бенедикса при градиенте температуры порядка $10^3 \text{ K} \cdot \text{см}^{-1}$.

В данной работе предпринята попытка исследовать механизм рассеяния неравновесных носителей тока, а также поведение термоэдс и поперечного эффекта Нернста– Эттингсгаузена (Н–Э) в условиях, далеких от термодинамического равновесия.

С этой целью измерены поперечный эффект H–Э и термоэдс компенсированного электронного германия ($n = 2 \cdot 10^{11} \text{ см}^{-3}$) в зависимости от градиента температуры (ГТ), который изменялся в интервале ($2 \div 1.5 \cdot 10^3$) К $\cdot \text{ см}^{-1}$ при постоянной средней температуре образца $\bar{T} = 350$ К.

Медленное изменение ГТ в указаном выше интервале при одновременном сохранении одной и той же средней температуры образца

$$\bar{T} = (T_h + T_c)/2$$

осуществлялось согласно методике, описанной в работе [4]. Здесь T_h, T_c — температуры нагревателя и холодильника соответственно. Вначале, удерживая холодильник (к которому припаян один торец образца) в парах жидкого азота, мы включали нагреватель (припаянный к противоположному торцу образца) на очень малую мощность. При этом реализуется начало экспериментальных кривых при $\nabla T = 2 \text{ K} \cdot \text{см}^{-1}$, $\bar{T} = 350 \text{ K}$ (см. рисунок). Далее, постепенно погружая холодильник в пары жидкого азота (в последующем в жидкий азот) и одновременно увеличивая мощность нагревателя, мы реализовали условия опыта, соответствующие параметрам $\nabla T > 10 \text{ K} \cdot \text{см}^{-1}$, $\bar{T} = 350 \text{ K}$. При создании градиента $\nabla T > 10^2 \text{ K} \cdot \text{см}^{-1}$ охлаждение холодильника производилось жидким гелием, а выделяемая на нагревателе мощность достигала 2 кВт.

На рисунке представлены зависимости коэффициента поперечного эффекта Нернста–Эттингсгаузена Q_1 и коэффициента дифференциальной термоэдс α от градиента

Зависимости термоэдс α (1) и коэффициента Нернста– Эттингсгаузена Q_1 (2) от градиента температуры ∇T для электронного германия ($n = 2 \cdot 10^{11} \,\mathrm{cm^{-3}}$) при средней температуре $\bar{T} = 350 \,\mathrm{K}$. Штриховая линия 3 — теория термоэдс, штрихпунктирной линией 4 показана пропорциональность $|Q_1| \sim (\nabla T)^{-3}$ в области большого градиента температуры.

температуры ∇T , измеренные на *n*-Ge при $\overline{T} = 350$ К. Коэффициент Q_1 измерялся в магнитном поле 10 кЭ, соответствовавшем условию слабого поля для измерения эффекта H–Э в электронном германии при указанной средней температуре образца.

Измерения Q_1 , проведенные по стандартной методике [5], при условии, когда положительный ГТ направлен по оси 0X, а магнитное поле по оси 0Z, показали, что при этом возникает поле поперечного эффекта H–Э (правая система координат), направленное в противоположном оси 0Y направлении, т.е. коэффициент Q_1 отрицателен. Знак $Q_1 < 0$ сохраняется, как видно из рисунка (кривая 2), во всем интервале ГТ. При этом коэффициент Q_1 резко уменьшается по абсолютной величине при приближении к области БГТ, т.е. когда градиент температуры порядка $10^3 \text{ K} \cdot \text{см}^{-1}$.

О зависимости Q_1 (∇T) при БГТ можно сказать следующее. Поскольку знак Q_1 остается отрицательным во всем интервале ГТ, неосновные неравновесные носители тока (дырки), как и основные, в области собственной проводимости *n*-Ge рассеиваются на акустических фононах [5]. Резкое уменьшение величины Q_1 при БГТ по закону $Q_1 \sim (\nabla T)^{-3}$ (кривая 4) можно качественно объяснить уменьшением эффективной подвижности при возникновении неравновесных носителей тока [1].

Что касается зависимости термоэдс α от градиента температуры, то, как видно из рисунка, при малых ГТ термоэдс не изменяется, а при ГТ, близком к значению $10^3 \text{ K} \cdot \text{см}^{-1}$, — возрастает. Изменение термоэдс при БГТ (кривая *I*) сопоставлена с теоретической зависимостью (кривая *3*), полученной по формуле из работы [3] для случая рассеяния энергии носителя тока на акустических фононах, а импульса — на ионизованных примесях:

$$\alpha_B = \frac{57k_B^3(\Delta T)^2 \tau_i^3(T_0 + T_1)}{|e|(m^*)^2 \upsilon_3^2(\Delta x)^2 T_0^2 T_1^2},\tag{1}$$

где T_1, T_0 — температуры горячего и холодного торцов образца соответственно; $\Delta T = T_1 - T_0$; τ_i — время релаксации импульса на ионах примеси; Δx — длина образца; υ_3 —скорость звука; k_B — постоянная Больцмана; m^* — эффективная масса; e — заряд электрона. Видно, что наблюдаемое увеличение термоэдс в области БГТ (кривая 1) качественно согласуется с теоретической кривой 3.

Известны два механизма возникновения термоэдс Бенедикса. Первый, именуемый механизмом Тауца [1], работает при условии $L_D > L_T$. Если помимо неравенства $L_D > L_T$ выполняется условие $L_T^2 > l_{\varepsilon}^2$ ($l_{\varepsilon} = \sqrt{D\tau_{\varepsilon}}$ — длина остывания, τ_{ε} — время релаксации энергии), то включается механизм создания термоэдс Бенедикса в результате разогрева носителей тока тепловым полем, так называемый разогревный механизм [3].

В германии с концентрацией электронов $n = 2 \cdot 10^{11} \,\mathrm{cm^{-3}}$ условия $L_D > L_T$ и $L_T^2 > l_{\varepsilon}^2$ для $\bar{T} = 350 \,\mathrm{K}$ выполняются при $\nabla T \simeq 8 \cdot 10^2 \,\mathrm{K} \cdot \mathrm{cm^{-1}}$. Следовательно, наблюдаемое изменение термоэдс

объясняется разогревным механизмом возникновения термоэдс Бенедикса. Отметим, что формула, с помощью которой получена кривая *3*, выведена в работе [3] для случая разогревного механизма возникновения термоэдс Бенедикса.

Список литературы

- Я. Тауц. Фото- и термоэлектрические явления в полупроводниках (М., ИЛ, 1962).
- [2] В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников (М., Наука, 1977).
- [3] Л.П. Булан, Р.Б. Ладыка. ФТП, 24, 1221 (1982).
- [4] М.М. Гаджиалиев. В кн.: Плазма в полупроводниках (Махачкала, 1984) с. 21.
- [5] И.М. Цидильковский. Термомагнитные явления в полупроводниках (М., Физматгиз, 1960) с. 290.

Редактор Т.А. Полянская

Experimental study of the transverse Nernst–Ettingshausen effect and thermal e.m.f. under large tempetature gradient

M.M. Gadjaliev, V.A. Yelizarov

Kh.I. Amirhanov Institute of Physics, Russian Academy of Sciences, 367003 Makhachkala, Russia