Разность потенциалов и фотовольтаический эффект, возникающие вследствие деформации волновой функции электрона в GaAs-квантовой яме с тонким AlGaAs-барьером

© Ю. Пожела, К. Пожела

Semiconductor Physics Institute, 2600 Vilnius, Lithuania

(Получена 23 марта 1998 г. Принята к печати 28 марта 1998 г.)

Рассчитано изменение спектра и деформации волновой функции электронов в GaAs-квантовой яме при введении в нее тонкого AlGaAs-барьера. Вычислена разность потенциалов, возникающая на квантовой яме вследствие деформации волновой функции электронов, и ее зависимость от положения барьера в квантовой яме. Определены фотовольтаический отклик в структуре на оптическое межподзонное возбуждение, роль деформации волновой функции и спектра электронов, а также межподзонных безызлучательных переходов в его образовании. Рассмотрена пригодность использования GaAs-квантовой ямы с тонким барьером в качестве структуры для детектирования инфракрасного излучения.

1. Введение

Большой интерес к исследованию свойств двухмерного электронного газа в связанных квантовых ямах (КЯ) вызван возможностями направленного регулирования в них спектра энергии и скоростей рассеяния электронов, оптических параметров структур с помощью изменения формы КЯ и связи между КЯ. Связанные КЯ стали основой многих полупроводниковых электронных и оптоэлектронных приборов. На основе таких структур созданы лазеры инфракрасного (ИК) диапазона [1–3], приемники ИК излучения [4,5], элементы нелинейной оптики [6], быстродействующие транзисторы [7].

В настоящей статье рассмотрены новые явления, обусловленные деформацией волновой функции электрона в квантовых ямах, разделенных столь тонким барьером, что энергетические уровни и волновые функции электронов оказываются общими для обеих КЯ. Рассматривается асимметрия поляризации электронного заряда в КЯ при введении в нее тонкого барьера и связанное с ней возникновение на КЯ разности потенциалов и фотовольтаического эффекта.

Фотовольтаический эффект в связанных КЯ наблюдается в структурах, когда электронные состояния формируются в разделенных толстым потенциальным барьером КЯ. Толстый барьер между КЯ препятствует возвращению разнесенных по координате фотовозбужденных электронов в нейтральное положение путем туннелирования сквозь барьер, что обеспечивает большую величину фотовольтаического отклика структуры и возможность ее использования для детектирования ИК излучения [4,8,9]. В структуре с тонким разделяющим барьером фотовольтаический отклик возможен, если найдена альтернатива толстому барьеру для обеспечения конечного времени релаксации фотовозбужденных электронов в равновесное состояние. В статье в качестве такой альтернативы рассматривается возможность радикального уменьшения с помощью введения в КЯ тонкого барьера скорости межподзонных безызлучательных переходов.

Расчеты разности потенциалов на КЯ и фотовольтаического отклика, обусловленного деформацией волновой функции, проведены на примере КЯ в структуре Al_{0.3}Ga_{0.7}As/GaAs/Al_{0.3}Ga_{0.7}As с тонким (один-два монослоя) AlGaAs-барьером.

Напряжение, возникающее вследствие деформации волновой функции электрона в GaAs-квантовой яме с тонким AlGaAs-барьером

Введение в двухмерную КЯ тонкого барьера, разделяющего ее на две неравные части, изменяет спектр энергии электронов в КЯ и деформирует волновые функции электрона, приводя к нарушению симметрии распределения их заряда в КЯ.

Рассмотрим эти явления на примере конкретной гетероструктуры $Al_{0.3}Ga_{0.7}As/GaAs/Al_{0.3}Ga_{0.7}As$ с шириной GaAs-KЯ L = 20 нм, в которую введен в плоскости $z = l_b$ тонкий, толщиной d = 1 нм, $Al_{0.3}Ga_{0.7}As$ -барьер. Схема структуры показана на рис. 1. Волновые функции и энергии электронов вычисляются путем численного решения уравнения Шредингера. Полагается, что высота

Рис. 1. Потенциал дна зоны проводимости КЯ AlGaAs/GaAs/AlGaAs шириной *L* с тонким AlGaAs-барьером толщиной *d*, расположенным в плоскости *l_b*; *U*₀ — высота гетеробарьера; *z* — координата в направлении роста гетероструктуры.

Рис. 2. Зависимость от положения AlGaAs-барьера l_b в GaAS-КЯ шириной L = 20 нм первых трех энергетических уровней электронов E_1, E_2, E_3 в КЯ (слошная линия), энергий дна первой и второй подзон в широкой (правой) (штрихпунктирная) и узкой (левой) (штриховая) частях КЯ. При $l_b \approx 4$ нм меняются типы подзон на уровнях E_2 и E_3 .

гетеробарьеров $U_0 = 0.3$ эВ и эффективные массы электронов равны $m^* = 0.067$ в слое GaAs и $m^* = 0.27$ в слое AlGaAs.

Вычисленный спектр энергий электронов (E) в такой КЯ показан на рис. 2. Показаны первые три уровня. Энергии уровней в зависимости от координаты барьера в КЯ определяются положением дна различных подзон в связанных КЯ. В этом состоит радикальное изменение характера спектра электронов в КЯ, вносимое введением в нее барьера. Энергия Е1 первого (нижнего) уровня соответствует энергии дна нижней подзоны электронов в широкой части разделенной КЯ. Второй уровень энергии E_2 в КЯ только в области $l_b < 5.0\,\mathrm{нм}$ определяется энергией дна второй подзоны электронов в широкой части КЯ. При $l_b > 5.0$ нм второй уровень энергии в КЯ соответствует энергии дна первой (нижней) подзоны в узкой части КЯ, которая оказывается ниже, чем энергия дна второй подзоны в широкой части КЯ. В результате второй уровень энергии Е2 приближается к первому уровню Е1 с увеличением координаты барьера l_b . Аналогично третий уровень E_3 при $l_b < 5.0$ нм соответствует дну первой подзоны в узкой части КЯ, а при $l_b > 5.0$ нм — дну второй подзоны широкой части КЯ.

Волновые функции электронов на уровнях E_1 , E_2 , E_3 соответствуют волновым функциям в подзонах, отвественных за формирование уровня. На рис. 3 показаны квадраты амплитуд волновых функций $|\varphi_{ei}|^2$ на уровнях энергии E_i при трех характерных положениях введенного в КЯ барьера: $l_b = 2.5$, 5.0, 7.5 нм. При $l_b = 2.5$ нм электроны на нижних двух уровнях находятся в подзонах широкой части КЯ и происходит сдвиг области заряда электроны в эту часть КЯ. При $l_b = 5.0$ нм только электроны первого уровня E_1 остаются в нижней подзоне широкой части КЯ. Электроны второго уровня E_2

оказываются частично в нижней подзоне узкой части КЯ. Электроны уровня E_3 , который при $l_b = 5.0$ нм очень близок к уровню E_2 , оказываются в основном на уровне нижней подзоны узкой части КЯ.

Наконец, при $l_b = 7.5$ нм электроны первого (E_1) и третьего (E_3) уровней энергий оказываются соответственно в первой и второй подзонах широкой части КЯ,

Рис. 3. Квадраты амплитуд волновых функций электронов $|\varphi_{ei}|^2$ в зависимости от координаты *z* на первом (нижнем) (1), втором (2) и третьем (3) уровнях энергии в GaAs-KЯ (L = 20 нм) при положениях AlGaAs-барьера $l_b = 2.5 (a)$, 5.0 (b) и 7.5 нм (*c*).

а на втором уровне (E_2) все электроны переходят в первую подзону узкой части КЯ. Как видим, смещение тонкого барьера в КЯ вносит существенную асимметрию в распределение электронного заряда на уровнях КЯ, что ведет к формированию разности потенциалов на КЯ.

Положим, что структура однородно легирована донорами. Ионизированные доноры определяют равномерно распределенный по сечению КЯ положительный заряд. Решение уравнения Пуассона дает для напряжения, возникающего в КЯ вследствие деформации волновых функций электронов на трех уровнях в КЯ, следующее выражение:

$$V_L = \frac{|e|}{\varepsilon_1} N_d (L_2 - L_1) \left[\frac{L_2 - L_1}{2} - \sum_{i=1}^3 \frac{n_{0i}}{N_d} \int_{L_1}^{L_2} F_i(z) dz \right], \quad (1)$$

где

$$F_i(z) = \int_{L_i}^{z} \left|\varphi_{ei}(z')\right|^2 dz'.$$
(2)

Здесь e — заряд электрона, ε_1 — диэлектрическая проницаемость GaAs, N_d — концентрация ионизированных доноров, n_{0i} — равновесная концентрация электронов на уровне E_i ; L_1 и L_2 — координаты краев KЯ, охватывающие области проникновения электронов в слои AlGaAs.

На рис. 4 показана зависимость V_L от l_b в рассматриваемой гетероструктуре при $N_d(L_2 - L_1) = 8 \cdot 10^{15} \,\mathrm{m}^{-2}$. Как видим, напряжение V_L отражает процесс деформации распределения зарядов внутри КЯ при введении в нее барьера. Электронный заряд заселенных при 77 К первых двух подзон смещается в сторону широкой части КЯ пока $l_b \leq 5.0$ нм. При $l_b \geq 5.0$ нм электроны второго уровня (n_{02}) возвращаются в узкую часть КЯ (рис. 3). В результате V_L уменьшается с дальнейшим сдвигом барьера к центру КЯ, достигая нуля, когда барьер оказывается в центре. Зависимость V_L от l_b в правой части

Рис. 4. Зависимость разности потенциала V_L , обусловленной деформацией электронной волновой функции в GaAs-KЯ, от положения барьера l_b при T = 293 (1) и 77 K (2). Штриховая линия — величина V_L в предположении заполнения электронами только нижнего уровня энергии E_1 , $n_{02} = n_{03} = 0$.

КЯ повторяет картину в левой части с обратным знаком. При T = 293 К сказывается заселенность третьего уровня, максимум V_L уменьшается и смещается в область меньших l_b , $l_b < 5$ нм.

Максимальное значение V_L достигается при таком положении l_b , когда начинается заполнение электронами второго уровня нижней подзоны узкой части КЯ. Если второй и третий уровень энергии не заполнены $(n_{02} = n_{03} = 0)$, то V_L растет, пока l_b не приближается к центру КЯ (см. рис. 4). Отметим, что напряжение V_L растет с увеличением легирования N_d и ширины КЯ. Потенциал V_L наблюдать в стационарном режиме невозможно из-за релаксации во времени (t) заряда, индуцированного на КЯ: $V_L \sim \exp(-t/RC)$, где R и С — сопротивление растекания и емкость, связанные с КЯ. Поэтому V_L проявляется лишь при динамическом возмущении электронного газа в КЯ. Такие возмущения могут быть вызваны внешними электромагнитными полями, оптическим межподзонным перебросом электронов. Измерение возмущения V_L может быть использовано для индикации заполнения подзон электронами в сильно связанных квантовых ямах.

Фотовольтаический эффект в GaAs-квантовой яме с AlGaAS-барьером

Пусть с помощью оптического возбуждения Δn электронов с первого энергетического уровня E_1 перебрасываются (прямо или через третий уровень) на второй уровень E_2 . Тогда на гетероструктуре возникает фотовольтаический сигнал V_{pv} , который равен разности напряжений V_L (1) в отсутствие и при наличии переброса Δn электронов,

$$V_{pv} = \frac{|e|}{\varepsilon_1} \Delta n \int_{L_1}^{L_2} \left\{ \int_{L_1}^{z} \left[\left| \varphi_{e1}(z') \right|^2 - \left| \varphi_{e2}(z') \right|^2 \right] dz' \right\} dz.$$
(3)

Отметим, что напряжение V_{pv} прямо пропорционально Δn и не зависит от температуры и уровня легирования N_d . На рис. 5 приведена зависимость V_{pv} от положения барьера в КЯ при $\Delta n = 8 \cdot 10^{14} \,\mathrm{m}^{-2}$. Зависимость V_{pv} от l_b отражает характер деформации волновых функций электронов. V_{pv} возникает при $l_b \approx 5.0 \,\mathrm{m}$, когда электроны второго уровня энергии начинают переходить из широкой в узкую часть КЯ, достигая максимального значения при $l_b \approx 7.5 \,\mathrm{m}$, когда электроны первого и второго уровней собираются в разных частях КЯ (см. рис. 3) и имеет место максимальная поляризация электронного газа в КЯ.

Рассмотрим условия оптического переброса электронов с уровня E_1 на уровень E_2 и возможности использования рассматриваемой структуры в качестве фотовольтаического детектора оптического излучения. Рассмотрим структуру с барьером в плоскости $l_b = 7.5$ нм,

Рис. 5. Фотовольтаический отклик V_{pv} на переброс $\Delta n = 8 \cdot 10^{14} \,\mathrm{m}^{-2}$ электронов с уровня E_1 на уровень E_2 в зависимости от положения AlGaAs-барьера l_b .

когда фотовольтаическое напряжение максимально. В этой структуре оптические переходы между уравнями E_1 и E_2 запрещены: интеграл перекрытия волновых функций электронов $\left| \int_{0}^{L} \varphi_{e1} \varphi_{e2} dz \right|^2$ равен нулю. Поэтому оптический переброс электронов с уровня E_1 на уровень E_2 происходит через третий уровень E_3 . При $l_b = 7.5$ нм $E_3 - E_1 = 65$ мэВ. Это значит, что структура может быть детектором инфракрасного излучения в диапазоне длин волн 5 ÷ 19 мкм.

После переброса на уровень E_3 электроны безызлучательно переходят на второй и первый уровни. Обозначив через W_{ij} частоту безызлучательных переходов между *i*и *j*-уровнями, из уравнения баланса переходов в трехуровневой системе получаем для числа переброшенных электронов с первого на второй уровень КЯ

$$\Delta n = \frac{W_{32}}{W_{21}(W_{31} + W_{32})} \frac{P}{h\nu_{13}},\tag{4}$$

где P — мощность оптического излучения, поглощенного в КЯ, и $h\nu_{13}$ — квант энергии перехода между уровнями E_1 и E_3 . Подставив (4) в (3), получаем для величины фотовольтаического отклика детектора излучения

$$\frac{V_{pv}}{P} = \frac{|e|}{\varepsilon_1} \frac{W_{32}}{W_{21}(W_{31} + W_{32})h\nu_{13}} \times \int_{L_1}^{L_2} \left\{ \int_{L_1}^{z} \left[\left| \varphi_{e1}(z') \right|^2 - \left| \varphi_{e2}(z') \right|^2 \right] dz' \right\} dz.$$
(5)

Для повышения величины фотовольтаического отклика следует увеличивать W_{32} (что также увеличивает быстродействие детектора), но главное — уменьшать W_{21} . Величина W_{21}^{-1} есть время жизни переброшенных на второй уровень электронов. В детекторах инфракрасного излучения на основе межподзонных переходов в связанных (несимметричных) КЯ увеличение времени жизни электронов на втором уровне достигается путем увеличения толщины барьера между КЯ и тем самым снижения скорости туннелирования электронов сквозь барьер со второго на первый уровень [4]. В структурах с толстым барьером первый и второй уровни, соответствующие трехуровневой модели, находятся в разных КЯ.

В рассматриваемой нами структуре с тонким разделяющим барьером первый и второй уровни являются общими для обеих КЯ и частота W_{21} определяется частотой безызлучательных переходов между этими уровнями.

Расчеты скорости межподзонных переходов в GaAS-КЯ показывают, что доминирующим механизмом, ответственным за такие переходы, является рассеяние электронов путем эмиссии (поглощения) полярных оптических фононов [10,11]. Расчеты скоростей рассеяния в GaAs-КЯ с тонким AlGaAs-барьером, выполненные в приближении диэлектрического континуума с учетом взаимодействия электронов поверхностными с захваченными И полярными оптическими фононами при $T = 77 \,\mathrm{K}$ показали, что частоты переходов при положении AlGaAs-барьера в области 5 < l_b < 15 нм, когда $E_k + E_2 - E_1 < \hbar \omega_0$, а $E_k + E_3$ $-E_2 > \hbar \omega_0$ (где $E_k = 6.6$ мэВ — кинетическая энергия электрона при 77 К и $\hbar\omega_0 = 36.2 \,\mathrm{M}$ эВ — энергия оптического фонона в GaAs) равны: $W_{21} = 3 \cdot 10^9 \,\mathrm{c}^{-1}$, $W_{31} = 1 \cdot 10^{12} \,\mathrm{c}^{-1}$ и $W_{32} = 3 \cdot 10^{12} \,\mathrm{c}^{-1}$. Если энергия переходов $E_2 - E_1 > \hbar \omega_0$, то $W_{21} > 10^{12} \,\mathrm{c}^{-1}$. Снижение почти на 3 порядка частоты W₂₁ при введении барьера в центральную область КЯ обусловлено энергетическим запрещением электронных переходов с эмиссией оптических фононов.

Таким образом, введение барьера в КЯ сохраняет большое значение частоты рассеяния W_{32} , резко снижает рассеяние W_{21} , позволяя увеличить время жизни электронов в переброшенном состоянии до 0.2 пс, что сравнимо со временем жизни в структурах с толстым барьером между КЯ.

Подставляя полученные значения W_{32} , W_{31} и W_{21} в (5), получаем для фотовольтаического отклика на поглощенную мощность в КЯ с тонким барьером при $l_b = 7.5$ нм $V_{pv}/P = 8.8$ В/Вт. Это несколько ниже, чем в детекторах с толстым барьером.

Отметим, что структура с тонким барьером допускает обратный оптический переброс с уровней E_2 на E_1 через уровень E_3 . Хотя интеграл перекрытия волновых функций $\left| \int_{L_1}^{L_2} (\varphi_2 \varphi_3) dz \right|^2$ при $l_b > 7$ нм стремится к нулю, величина фотовольтаического отклика в структуре с положением барьера в плоскости $l_b \approx 6$ нм оказывается больше, чем в рассмотренном выше случае с прямым оптическим переходом.

Полученные для конкретной структуры GaAs-КЯ шириною L = 20.0 нм результаты носят более общий характер. Можно утверждать, что при масштабном увеличении ширины КЯ L фотовольтаический отклик будет иметь место при положении барьера в квантовой яме $l_b > 0.25L$ с максимумом при $l_b = 0.33L$. Масштабирование структуры позволяет задавать энергию перехода $E_1 \rightarrow E_3$ и тем самым подбирать энергию детектируемого сигнала.

Отметим, что в структурах с L < 10.0 нм фотовольтаический отклик будет нулевым из-за резкого роста частоты переходов W_{21} , когда $E_2 - E_1 > \hbar\omega_0$.

4. Заключение

Расчеты деформации спектра и волновых функций электронов в КЯ AlGaAs/GaAs/AlGaAs шириной L = 20.0 нм с тонким (d = 1 нм) барьером AlGaAs в плоскости l_b показали, что введение барьера в КЯ в область $0 < l_b < 5$ нм сдвигает электронный заряд в сторону широкой части КЯ и ведет при однородном примесном легировании к возникновению разности потенциала V_L на краях КЯ.

При $l_b > 5$ нм энергия дна первой подзоны в узкой части кристалла оказывается ниже дна второй подзоны в широкой части кристалла и электроны второго уровня в КЯ смещаются назад в узкую часть КЯ, компенсируя разность потенциалов V_L . Сильная поляризация заряда электронов второго уровня относительно первого при $l_b > 5$ нм создает условия для фотовольтаического отклика на оптическое возбуждение электронов между этими уровнями. Максимальный фотовольтаический отклик имеет место при $l_b = 7$ нм.

Расчеты скоростей межподзонных переходов в структуре показали, что время жизни фотовозбужденных электронов на втором уровне при $l_b > 5$ нм может быть увеличено до 0.3 нс. Такое увеличение времени жизни обеспечивает высокое значение фотовольтаического отклика и пригодность использования структуры GaAs-КЯ с тонким AlGaAs-барьером в качестве детектора оптического излучения в инфракрасной области.

Список литературы

- F.H. Julien, A. Sa'ar, J. Wang, J.P. Leburton. Electron. Lett., 31, 838 (1995).
- [2] J. Faist, F. Capasso, D. Sivco, C. Sirtori, A.L. Hutchinson, S.N.G. Chu, A.Y. Cho. Science, 264, 553 (1994).
- [3] P. Boucaud, F.H. Julien, D.D. Yang, J.M. Lourtioz, E. Rosencher, P. Bois, J. Nagle. Appl.Phys. Lett., 57, 3 (1990).
- [4] B.F. Levine. J. Appl. Phys., 74, N 8, R1 (1993).
- [5] H. Schneider, C. Schonbein, G. Bihlmann. Appl. Phys. Lett., 70, N 12, 1602 (1997).
- [6] E. Rosencher, Ph. Bois. Phys. Rev. B, 44, 11315 (1991).
- [7] J. Požela. *Physics of high speed tranzistors* (Plenum, N.Y., 1994).
- [8] H. Schneider. J. Appl. Phys., 74, N 7, 4789 (1993).
- [9] C. Schonbein, H. Schneider, G. Bihlmann, K. Schwarz, P. Koidl. Appl. Phys. Lett., 68, N 7, 973 (1996).
- [10] J. Požela, V. Jucienė, K. Požela. Semicond. Sci. Technol., 10, N 12, 1555 (1995).

[11] J. Požela, V. Jucienė, A. Namajūnas, K. Požela, V.G. Mokerov, Yu.V. Fedorov, V.E. Kaminskii, A.V. Hook. J. Appl. Phys., 82, N 11, 5564 (1997).

Редактор Л.В. Шаронова

Potential difference and photovoltaic effect stemming from deformation of an electron wave function in GaAs quantum well with a thin AlGaAs barrier

Yu. Pozhela, K. Pozhela

Semiconductor Physics Institute, 2600 Vilnius, Lithuania