Многочастичные эффекты при туннелировании электронов в структуре металл–изолятор–полупроводник *p*-типа

© Г.М. Миньков, А.В. Германенко, О.Э. Рут

Институт физики и прикаладной математики при Уральском государственном университете, 620083 Екатеринбург, Россия

(Получена 13 октября 1997 г. Принята к печати 5 декабря 1997 г.)

Исследована туннельная проводимость структур, изготовленных на сильно легированном узкощелевом полупроводнике *p*-типа HgCdTe. Обнаружено резкое возрастание туннельной проводимости $\sigma_d(V)$ при напряжениях, соответствующих началу туннелирования в зону проводимости. Показано, что наблюдаемые зависимости $\sigma_d(V)$ не удается описать в рамках модели одночастичного туннелирования. Предположено, что резкий рост $\sigma_d(V)$ связан с туннелированием в экситонные состояния.

Хорошо известно, что при одночастичном туннелирований электронные состояния на краях разрешенных энергетических зон в электродах не дают резких особенностей на вольт-амперной характеристике при соответствующих напряжениях смещения [1]. Так, например, в туннельном контакте металл-диэлектрикполупроводник *p*-типа с простой параболической зоной проводимости зависимость дифференциальной проводимости $\sigma_d \equiv dj/dV$ от напряжения смещения (V) при $eV > E_g + E_F$ будет иметь вид

$$\sigma_d(V) \propto (eV - E_g - E_F)^{3/2},$$

где E_g — ширина запрещенной зоны полупроводника, а E_F — энергия Ферми, отсчитываемая от потолка валентной зоны. Такой вид зависимость $\sigma_d(V)$ имеет в предположении, что отсутствует поверхностный изгиб зон в полупроводнике и туннельная прозрачность диэлектрика не зависит от энергии носителя заряда (*E*) и напряжения смещения в рассматриваемом диапазоне *E* и *V*. В действительности, эти факторы могут заметно изменить функциональную зависимость $\sigma_d(V)$, но не плавность "включения" состояний зоны проводимости в процессы туннелирования.

Многоэлектронные эффекты в туннелировании изменяют зависимость $\sigma_d(V)$. Во многих работах, начиная с работы Аронова, Альтшулера [2], было показано, что именно межэлектронное взаимодействие является одной из главных причин возникновения "нулевой аномалии" на вольт-амперных характеристиках туннельных контактов. Вопрос о том, к каким изменениям в туннельной проводимости может привести межэлектронное взаимодействие при туннелировании электронов в зону проводимости полупроводника *p*-типа, когда конечными состояниями могут быть и экситонные состояния, насколько нам известно, не рассматривался, тем не менее, очевидно, оно может проявляться в туннельных экспериментах.

Мы исследовали зависимости туннельной проводимости от напряжения смещения и магнитного поля в структурах p-Hg_{1-x}Cd_xTe-окисел Al с составом твердого раствора 0.17 < x < 0.2, что соответствует

 $E_g = 20-80$ мэВ, и концентрацией нескомпенсированных акцепторов $N_A - N_D = 1.5 \cdot 10^{18} \text{ см}^{-3}$. Методика изготовления туннельных контактов описана в работе [3].

Зависимости $\sigma_d(V)$ для одного из контактов приведены на рис. 1. Видно, что существует некоторое пороговое напряжение $V_{\rm thr} \approx 80\,{\rm MB}$, при котором наблюдается резкий рост σ_d : при изменении смещения на 5-7 мВ σ_d увеличивается больше, чем на порядок. В квантующем магнитном поле В при напряжениях смещения V > V_{thr} наблюдаются осцилляции туннельной проводимости (рис. 1). Эти осцилляции периодичны по обратному магнитному полю 1/B при постоянном смещении, и их период одинаков в ориентациях $\mathbf{B} \perp \mathbf{n}$ и $\mathbf{B} \parallel \mathbf{n}$ (\mathbf{n} нормаль к плоскости туннельного контакта). Этот факт, а также отсутствие типичной для 2D состояний угловой зависимости положения осцилляций в магнитном поле показывает, что наблюдаемые осцилляции обусловлены туннелированием на уровни Ландау объемных состояний полупроводника. Таким образом, положение осцилляций

Рис. 1. Зависимость дифференциального сопротивления от напряжения смещения для одной из исследованных структур в магнитном поле **B** || **n**; *B*, Тл: *1* — 0, *2* — 0.3, *3* — 0.6, *4* — 2.5. На вставке — энергетическая диаграмма туннельного контакта.

Рис. 2. Положение максимумов туннельной проводимости (1) при **B** \parallel **n** и положение середины ступеньки при **B** \perp **n** (2) и **B** \parallel **n** (3).

в координатах V и B (рис. 2) отражает положение уровней Ландау объемных состояний, а их экстраполяция к B = 0 дает возможность непосредственно определить энергию, соответствующую дну зоны проводимости. Видно, что в пределах точности измерений положение ступеньки на зависимости $\sigma_d(V)$ совпадает с точкой экстраполяции и, следовательно, соответствует смещению, при котором начитается туннелирование на дно зоны проводимости.

Для анализа экспериментальных результатов была рассчитана зависимость $\sigma_d(V)$ для одночастичного туннелирования в полупроводнике с Кейновским законом дисперсии. Это нетрудно сделать, используя стандартное выражение для туннельного тока

$$j \propto D \sum (\hat{v}\psi)^2,$$

где D — туннельная прозрачность барьера, $(\hat{v}\psi)^2$ — квадрат скорости состояний полупроводника на границе полупроводник-диэлектрик, и суммирование идет по всем не занятым электронами состояниям полупроводника. Таким образом, для расчета необходимо знать зависимость $(\hat{v}\psi)^2$ от энергии. Эта зависимость находилась для модельной структуры, в которой полагалось, что диэлектрик имеет кейновский спектр с большой величиной запрещенной зоны [4]. В этом приближении задача сводится к решению системы двух дифференциальных уравнений, которая решалась численно [5] как для плоских зон, так и для различных значений поверхностного потенциала. (В нашем случае, как следует

из решения уравнения Пуассона, форма потенциала — параболическая). Рассчитанные зависимости $\sigma_d(V)$ для нескольких значений поверхностного потенциала (φ_s), не достаточных для локализации 2D состояний, приведены на рис. 3.

Видно, что при всех значениях φ_s отсутствует резкий рост σ_d при смещениях, соответствующих дну зоны проводимости. Более того, экспериментально наблюдаемую зависимость $\sigma_d(V)$ не удается объяснить в рамках одночастичного туннелирования в объемные состояния полупроводника при любом изменении поверхностного потенциала $\Delta \varphi_s$ при изменении смещения и естественном требовании $\Delta \varphi_s < V$. Как видно из рис. 4, для согласования рассчитанной и экспериментальной зависимостей $\sigma_d(V)$ необходимо потребовать, чтобы изменение

Рис. 3. Зависимости туннельной проводимости от напряжения смещения V: I — эксперимент; 2-4 — расчет при значениях поверхностного потенциала: φ_s , мэВ: 2 - -80, 3 - 0, 4 - 80.

Рис. 4. Зависимость поверхностного потенциала φ_s от напряжения смещения V, требуемая для согласования экспериментальной и теоретической зависимостей $\sigma_d(V)$ в модели одночастичного туннелирования.

Физика и техника полупроводников, 1998, том 32, № 9

поверхностного потенциала было по крайней мере в 1.5 раза больше, чем величина приложенного напряжения.

Можно предположить, что в исследованных структурах при $V \leq V_{\text{thr}}$ существует поверхностный потенциал, достаточный для локализации 2D состояний с очень малой энергией связи, и резкий рост σ_d при $V = V_{\text{thr}}$ обусловлен туннелированием в эти состояния¹. С ростом смещения потенциал уменьшается и при V > V_{thr} локализованные 2D состояния исчезают, так что при этих смещениях туннелирование идет в объемные состояния, как и следует из отсутствия угловой зависимости положения осцилляций туннельной проводимости. Однако в этом случае, как показывают расчеты, сдвиг ступеньки в область больших смещений с ростом магнитного поля должен быть различным при $\mathbf{B} \perp \mathbf{n}$ и $\mathbf{B} \parallel \mathbf{n}$. Даже если предположить, что энергия связи 2D состояний равна всего 1-2 мэВ, то при B = 4 Тл разница в положении ступеньки при **B** \perp **n** и **B** \parallel **n** должна составлять 1.5–2 мэВ. (При большей энергии связи эта разница оказывается еще больше). Как видно из экспериментальных результатов (рис. 2), в пределах точности измерений (0.5 мэВ) середина ступеньки сдвигается одинаково при $\mathbf{B} \perp \mathbf{n}$ и **В** || **n**. Таким образом, возможные механизмы, которые при одночастичном туннелировании могли бы привести к возникновению резкой ступеньки в зависимости $\sigma_d(V)$, не дают объяснения экспериментальным данным.

На наш взгляд, резкая ступенька на зависимости $\sigma_d(V)$ при туннелировании электрона в полупроводник р-типа может быть следствием электрон-дырочного взаимодействия. Действительно, при одночастичном туннелировании одной из причин плавного изменения $\sigma_d(V)$ при напряжениях, соответствующих дну зоны проводимости, является равенство плотности конечных состояний при $eV = E_g + E_F$. В отличие от этого, при туннелировании в материал *p*-типа электрон после туннелирования может попасть также и в "экситонные" состояния, количество которых равно концентрации свободных дырок. Поскольку энергия, необходимая для туннелирования в такие состояния близка к Eg, это дожно привести к дополнительному росту $\sigma_d(V)$ при $eV = E_g + E_F$. Конечно, в исследованных структурах концентрация дырок столь велика, что радиус экситонных состояний больше радиуса экранирования, так что экситоны не являются устойчивыми и распадаются за время τ , которое определяется временем экранирования (τ_0) и временем рассеяния (τ_{SC}):

$$au \approx (1/ au_0 + 1/ au_{SC})^{-1}.$$

При этом размытие h/τ порядка 10 мэВ, т.е. больше энергии ионизации экситона, которая в исследованных

материалах порядка 0.1 мэВ. При оценке мы полагали

$$au_{SC} \approx m_h \mu/e$$
,

где m_h , μ — эффективная масса и подвижность тяжелых дырок, а $\tau_0 \approx 1/\omega_p$, где ω_p — плазменная частота. Величина размытия $h/\tau \approx 10$ мэВ близка к ширине ступеньки, наблюдаемой экспериментально.

Возможно, роль многоэлектронных эффектов при туннелировании в сильно легированный полупрводник р-типа более оправданно рассматривать с другой стороны. Известно, что электрон-электронное взаимодейтсвие при туннелировании электрона в полупроводник *п*-типа приводит к подавлению туннелирования при малых смещениях (zero-bias anomaly). Это происходит из-за того, что электрон после туннелирования должен "растолкнуть" окружающие носители заряда. При малых смещениях его избыточная энергия (eV) меньше энергии, необходимой для такого "расталкивания", что и приводит к подавлению туннелирования при этих смещениях [6]. В отличие от этого, когда электрон после туннелирования попадает в зону проводимости материала р-типа, между ним и остальными носителями заряда действует притяжение, что может приводить к росту проводимости при энергии, соответствующей дну зоны проводимости. К сожалению, насколько нам известно, в литературе отсутствуют работы, учитывающие роль межэлектронного взаимодействия при туннелировании электронов в полупроводник *р*-типа.

В принципе, экспериментальные результаты можно качественно объяснить другим образом. Если электроны после туннелирования не успевают рекомбинировать с дырками или покинуть область вблизи барьера, то накопление заряда в этой области приведет к изменению потенциала и, как следствие, к более медленному росту проводимости при $eV > E_g + E_F$. Дальнейшие исследования необходимы воль-амперной характеристики для однозначного выяснения механизма, объясняющего особенности при туннелировании в полупроводник *p*-типа.

Авторы выражают благодарность В.А. Волкову за интерес к работе и полезное обсуждение.

Работа частично поддержана грантом РФФИ N 97-02-16168 и грантом программы "Физика твердотельных наноструктур".

Список литературы

- [1] Туннельные явления в твердых телах (М., Мир, 1973).
- [2] B.L. Altshuler, A.G. Aronov. Sol. St. Commum., **30**, 115 (1979).
- [3] Г.М. Миньков, О.Э. Рут, В.А. Ларионова, Л.В. Германенко. ЖЭТФ, 105, 719 (1994).
- [4] P. Sobkowicz, Semicond. Sci. Technol., 5, 183 (1990).
- [5] A.V. Germannko, G.M. Minkov, V.A. Larionova, O.E. Rut, C.R. Becker, G. Landwehr. Phys. Rev. B, **52**, 17 254 (1995).
- [6] L.S. Levitov, A.V. Shutov. Preprint: cond-mat/9501130, cond-mat/9607136.

Редактор Т.А. Полянская

¹ За счет сильного спин-орбитального взаимодействия дно зоны 2D состояний смещено из точки k = 0 [6], что должно приводить к дополнительной особенности (максимуму) в плотности конечных состояний вблизи дна зоны и, следовательно, к резкой особенности в σ_d при соответствующем смещении.

Many-particle effects for the tunneling of the electrons to the *p*-type semiconductors.

G.M. Min'kov, A.V. Germanenko, O.E. Rut

Institute for Physics and Applied Mathematics attached to the Ural State University, 620083 Yekatirinburg, Russia

grigori.minkov@usu.ru