УДК 621.315.592 О корреляции между температурными зависимостями ширины запрещенной зоны и энтальпии полупроводниковых кристаллов

© А.Ф. Ревинский

Брестский государственный университет, 224665 Брест, Белоруссия

(Получена 4 августа 1997 г. Принята к печати 2 февраля 1998 г.)

Для изучения характеристик электрон-фононного взаимодействия в кремнии был реализован из первых принципов псевдопотенциальный метод теории функционала плотности. Температурное смещение величины непрямого перехода, фононный спектр и энтальпия были вычислены в рамках теории функционала плотности. Между температурными зависимостями ширины запрещенной зоны $\Delta E_g(T)$ и энтальпии $\Delta H(T)$ существует соотношение $\Delta H(T) = K |\Delta E_g(T)|$. Обсуждаются физические причины данной корреляции.

Как было отмечено ранее [1], между экспоненциально определенными температурными зависимостями изменения величины запрещенной зоны $\Delta E_g(T)$ и приращением энтальпии $\Delta H(T)$ полупроводниковых кристаллов наблюдается корреляция, которая выражается в виде линейной зависимости

$$\Delta H(T) = K |\Delta E_g(T)|. \tag{1}$$

Исходя из термодинамических предпосылок, что ширина запрещенной зоны равна свободной энергии электронной подсистемы полупроводника в расчете на одну электронно-дырочную пару, в ряде работ, обзор которых представлен в [2], теоретически в самом общем случае была получена линейная зависимость

$$\left(\frac{\partial E_g}{\partial T}\right)_p \sim C_\nu,\tag{2}$$

из которой следует формула (1) для температуры меньше дебаевской, когда теплоемкости C_p и C_v различаются незначительно.

Соотношения (1) и (2) имеют важное значение при исследовании механизмов фазовых превращений полупроводник-металл [3]. В связи с этим представляет интерес обоснование существующей корреляции (1) в рамках квантово-механических подходов, так как они дают возможность наиболее полно учесть, в частности, влияние электрон-фононного взаимодействия (ЭФВ) на температурный ход величины запрещенной зоны и термодинамических функций.

Известно [4], что точное решение полной системы самосогласованных уравнений для электронов и фононов при использовании многочастичного гамильтониана Фрёлиха связано с определенными трудностями. Они в первую очередь обусловлены вычислениями вершинной функции в собственно-энергетической части электронной функции Грина. Вместе с тем при использовании адиабатического приближения, которое сводится к разделению координат электронной и фононной подсистем, фононный спектр металлов и полупроводников можно восстановить с достаточно высокой точностью $\sim (m/M)^{1/2}$ [5], где *m* и *M* — соответственно массы электрона и иона. Однако учет ЭФВ приводит к существенной перенормировке электронного энергетического спектра. В работах [6–8] в рамках адиабатического приближения при помощи теории возмущения Релея–Шредингера для смещений энергий $\varepsilon_{k,n}$ одноэлектронных состояний $|\mathbf{k}, n\rangle$ (**k** — вектор в зоне Бриллюэна, *n* — индекс зоны в электронном спектре) без учета эффектов ангармонизма получена формула

$$\Delta E_{\mathbf{k},n}[\mathbf{u}(\xi,\varkappa)] = \langle \mathbf{k}, n | \hat{H}_{\text{int}} | \mathbf{k}, n \rangle + \sum_{\mathbf{k}, n \neq \mathbf{k}', n'} \frac{|\langle \mathbf{k}', n' | \hat{H}_{\text{int}} | \mathbf{k}, n \rangle|^2}{\varepsilon_{\mathbf{k},n} - \varepsilon_{\mathbf{k}',n'} + i\eta}, \quad (3)$$

где гамильтониан ЭФВ \hat{H}_{int} использовался в виде разложения потенциала электрон-ионного взаимодействия $V_{\varkappa}[\mathbf{r} - \mathbf{R}(\xi, \varkappa) - \mathbf{u}(\xi, \varkappa)]$ в ряд по степеням смещений $u_{\alpha}(\xi, \varkappa)$ иона из положения равновесия. Здесь $\mathbf{R}(\xi, \varkappa)$ вектор, определяющий положение иона в решетке, ξ — номер ячейки, \varkappa — номер иона в ячейке, α — декартова координата. Зависимость от температуры вещественной части энергии (3) можно получить [7], взяв вариационную производную $\delta(\Delta E_{\mathbf{k},n})/\delta N_{\mathbf{q},j}$ по функции распределения фононов $N_{\mathbf{q},j}$ Бозе–Эйнштейна:

$$\Delta E_{\mathbf{k},n}(T) = \sum_{\mathbf{q},j} \frac{\delta(\Delta E_{\mathbf{k},n})}{\delta N_{\mathbf{q},j}} \left[N_{\mathbf{q},j} + \frac{1}{2} \right], \quad (4)$$

где **q** — волновой вектор фонона, j — номер фононной ветви. К настоящему времени в рамках предложенной модели проведены квантово-механические расчеты [7–9] температурной зависимости параметров зонной структуры полупроводников A^{IV} и $A^{III}B^V$. Отличительной особенностью данных работ является то, что фононный спектр не вычислялся из первых принципов. При этом зонная структура рассчитывалась [7,8] при помощи локальных ионных псевдопотенциалов. Такой подход мотивируется тем, что смещения одноэлектронных энергий (4) существенно меньше величин энергетических зазоров в зонной структуре. По этой причине согласно [7,8] не существует настоятельной необходимости проводить трудоемкие самосогласованные зонные расчеты из первых принципов с использованием нелокальных ионных псевдопотенциалов. Однако, как было показано ранее [10], учет нелокальной составляющей сохраняющих норму псевдопотенциалов ионов при вычислении параметров ЭФВ является весьма существенным и дает вклад ~ 20%. При этом для понимания физических причин существующей взаимосвязи между электронным строением кристалла и его термодинамическими функциями необходимо проводить расчеты зонной структуры, энергии связи, фононных спектров и термодинамических характеристик исследуемых веществ в рамках единого подхода. В связи с этим в данной работе с целью выявления физических механизмов существующей корреляции (1) при помощи функционала плотности на примере кремния со структурой алмаза проведен последовательный расчет фононного вклада в зависимости $\Delta E_{g}(T)$ и $\Delta H(T)$ на основании использования ранее полученных из первых принципов электронного и фононного спектров [11,12].

Для понимания алгоритма вычислений величин (4) необходимо привести промежуточные формулы. Одноэлектронные энергии рассчитывались при самосогласованном решении уравнения Кона–Шема

$$\begin{bmatrix} \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{G})^2 - \varepsilon_{\mathbf{k},n} \end{bmatrix} C_{n,\mathbf{k}}(\mathbf{G}) + \sum_{\mathbf{G}'} V(\mathbf{k} + \mathbf{G}, \mathbf{k} + \mathbf{G}') C_{n,\mathbf{k}}(\mathbf{G}') = 0, \quad (5)$$

где $V(\mathbf{k} + \mathbf{G}, \mathbf{k} + \mathbf{G}')$ — фурье-компонены эффективного одноэлектронного псевдопотенциала, \mathbf{G} — вектор обратной решетки, $C_{n,\mathbf{k}}(\mathbf{G})$ — коэффициенты в разложении псевдоволновой функции по плоским волнам

$$\mathbf{k}, n\rangle = \sum_{\mathbf{G}} C_{n,\mathbf{k}}(\mathbf{G}) \exp[i(\mathbf{k} + \mathbf{G})\mathbf{r}].$$
(6)

Экранированный эффективный псевдопотенциал $V(\mathbf{k} + \mathbf{G}, \mathbf{k} + \mathbf{G}')$ представляет собой сумму ионного, кулоновского и обменно-корреляцонного потенциалов:

$$V(\mathbf{k} + \mathbf{G}, \mathbf{k} + \mathbf{G}') = V_{\text{ion}}(\mathbf{k} + \mathbf{G}, \mathbf{k} + \mathbf{G}') + V_H(\mathbf{G} - \mathbf{G}') + V_{XC}(\mathbf{G} - \mathbf{G}'),$$
(7)

где ионный потенциал $V_{ion}(\mathbf{k} + \mathbf{G}, \mathbf{k} + \mathbf{G}')$ строился в виде суперпозиции сохраняющих форму нелокалых псевдопотенциалов ионов [13].

В формуле (3) первое слагаемое (вклад Дебая– Валлера) обусловлено сглаживанием кристаллического потенциала вследствие колебаний ионов. Второе слагаемое (собственно-энергетический вклад) предсталвяет собой увеличение электрон-фононной связи во 2-м порядке теории возмущений. При этом мнимая компонента данного слагаемого определяет время жизни полярона (электрона, сопровождаемого деформациями решетки). Вариационные производные $\delta(\Delta E_{\mathbf{k},n})/\delta N_{\mathbf{q},j}$ соответственно для вклада Дебая–Валлера (с индексом DW) и вещественной части собственно-энергетического вклада (с индексом SE) рассчитывались по формулам [8]

$$\left|\frac{\delta(\Delta E_{\mathbf{k},n})}{\delta N_{\mathbf{q},j}}\right|^{\mathrm{DW}} = -\frac{1}{2} \sum_{n',\varkappa,\varkappa'} \frac{B_{\alpha}^{*}(\mathbf{k},n,n',0,\varkappa)B_{\beta}(\mathbf{k},n,n',0,\varkappa')}{\varepsilon_{\mathbf{k},n} - \varepsilon_{\mathbf{k},n'}} \times \left[\frac{1}{M_{\varkappa}} \mathcal{E}_{\alpha}(-\mathbf{q}|j\varkappa)\mathcal{E}_{\beta}(\mathbf{q}|j\varkappa) + \frac{1}{M_{\varkappa'}} \mathcal{E}_{\alpha}(-\mathbf{q}|j\varkappa')\mathcal{E}_{\beta}(\mathbf{q}|j\varkappa')\right], \quad (8)$$

$$\left|\frac{\delta(\Delta E_{\mathbf{k},n})}{\delta N_{\mathbf{q},j}}\right|^{\mathrm{SE}} = \sum_{n',\varkappa} \frac{1}{M_{\varkappa'}} \frac{|\mathbf{B}(\mathbf{k},n,n',\mathbf{q},\varkappa) \mathcal{E}(\mathbf{q}|j\varkappa)|^2}{\varepsilon_{\mathbf{k},n} - \varepsilon_{\mathbf{k}+\mathbf{q},n'}}, \quad (9)$$

где $\mathcal{E}_{\alpha}(\mathbf{q}|j\boldsymbol{\varkappa})$ — декартовы компоненты векторов поляризации фононов.

Матричный элемент электрон-ионного взаимодействия B_{α} вычислялся в приближении жесткого ячеечного потенциала, которое допускает, что смещение иона \varkappa из положения равновесия на величину $\mathbf{u}(\xi, \varkappa)$ осуществляется без деформации потенциала V_{\varkappa} . Математически это сводится к тому, что величина B в (9) определяется только градиентом ионного псевдопотенциала в (7) без учета кулоновского и обменно-корреляционного потенциалов. Тогда элемент B_{α} равен

$$B_{\alpha}(\mathbf{k}, n, n', \mathbf{q}, \varkappa) = \sum_{\mathbf{G}, \mathbf{G}'} \left[\frac{\hbar}{\omega(\mathbf{q}, j)} \right]^{1/2} C_{\mathbf{k}+\mathbf{q}, n}(\mathbf{G}) C_{\mathbf{k}, n}(\mathbf{G}')$$

$$\times \exp[-i(\mathbf{k}' + \mathbf{G}' - \mathbf{k} - \mathbf{G}) \tau_{\varkappa}]$$

$$\times (\mathbf{k}' + \mathbf{G}' - \mathbf{k} - \mathbf{G})_{\alpha}$$

$$\times V_{\varkappa}(\mathbf{k}' + \mathbf{G}', \mathbf{k} + \mathbf{G}), \qquad (10)$$

где $\omega(\mathbf{q}, j)$ — частота нормальных колебаний, $\boldsymbol{\tau}_{\varkappa}$ — базисный вектор, $V_{\varkappa}(\mathbf{k}'+\mathbf{G}',\mathbf{k}+\mathbf{G})$ — форм-фактор экранированного нелокального псевдопотенциала иона Si⁴⁺.

В кремнии, как известно, ширина запрещенной зоны определяется непрямым переходом ($\Gamma'_{25,\nu} - \Delta^{\min}_{1,c}$). Согласно проведенным расчетам [11] $E_g = 1.05$ эВ, при экспериментальном значении $E_g^{exp} = 1.17$ эВ [14]. Полученное расхождение обусловлено тем, что метод функционала плотности предназначен для описания свойств многочастичных систем в основном состоянии. По этой причине энергии возбужденных состояний в зоне проводимости в рамках данного подхода точно не восстанавливаются. Вместе с тем это не отражается на рассчитанном значении величины фононного вклада в температурную зависимость ширины запрещенной зоны $\Delta E_g(T)$, так как он равен только сумме температурных смещений $\Delta E_{k,n}(T)$ отдельных одноэлектронных состояний, т.е. в нашем случае

$$\Delta E_g(T) = \Delta E(\Gamma'_{25,\nu}|T) + \Delta E(\Delta_{1,c}^{\min}|T).$$
(11)

При расчете зависимости $\Delta E_{\mathbf{k},n}(T)$ по формуле (4) возникают трудности вычислительного характера при интегрировании по зоне Бриллюэна. А именно, для получения численных значений $\Delta E_{\mathbf{k},n}^{\mathrm{SE}}(T)$ для каждого

вектора **q** зоны Бриллюэна проводить дополнительные самосогласованные решения уравнения Кона–Шема с целью вычисления энергий $\varepsilon_{\mathbf{k}+\mathbf{q},n}$ и волновых функций $|\mathbf{k} + \mathbf{q}, n\rangle$. Чтобы не прибегать к неоправданно большим затратам машинного времени, в данной работе производные (9) вначале вычислялись для специально выбранных симметричных точек зоны Бриллюэна (пятиточечная схема Чэди–Коэна [15]), после чего точки в 1/48 части зоны Бриллюэна выбирались методом Монте-Карло и производные (9) вычислялись при помощи интерполяционной процедуры [16]. Векторы поляризации фононов $\mathcal{E}(\mathbf{q}|j\varkappa)$ рассчитывались как собственные векторы динамической матрицы кремния, полученной ранее в работе [12].

Фононный вклад в уменьшение ширины запрещенной зоны кремния $\Delta E_g(T)$ представлен на рис. 1 в сравнении в существующими в литературе экспериментальными и теоретическими данными. Учет нелокальности псевдопотенциала иона Si⁴⁺ дает несколько лучшее согласие с опытом по сравнению с данными расчетов [8], выполненных при помощи локальных псевдопотенциалов. Достаточно большой разброс теоретических результатов относительно экспериментальных данных требует анализа точности представленной зависимости $\Delta E_g(T)$. Для вычисления величины $\Delta E_g(T)$ в данной работе использовались две фундаментальные характеристики кремния: зонная структура, рассчитанная с точностью 0.01 эВ [11] (200 плоских волн в разложении (6)), и частоты нормальных колебаний ионов, полученные с точностью 0.2 ТГц [12]. Варьирование одноэлектронных энергий $\varepsilon_{k,n}$ и частот $\omega(\mathbf{q}, j)$ в указанных пределах дает абсолютную

Рис. 1. Температурная зависимость ширины запрещенной зоны кремния. 1 — данная работа, 2 — расчет [8], 3 — эксперимент [17], 4 — расчет [9].

Рис. 2. Температурная зависимость решеточной теплоемкости кремния. Точки — данная работа, штриховая линия — эксперимент [21].

погрешность для $\Delta E_g(T)$, равную 2.5 мэВ. Точность экспериментальных данных [17] составляет 1 мэВ.

Проведенный в [18] расчет вклада $\Delta E_g^{\text{TE}}(T)$, обусловленного тепловым расширением кристалла кремния, показал, что эффекты ангармонизма в используемом на рис. 1 интервале температур весьма незначительны. А именно, для $T \leq 300 \text{ K} \Delta E_g^{\text{TE}}(T)$ меньше 2 мэВ.

Теплоемкости C_p и C_v кристалла связаны известным термодинамическим соотношением

$$C_p(T) = C_v(T) + 9T\alpha^2(T)B_0\Omega, \qquad (12)$$

где Ω — объем кристалла, $\alpha(T)$ — температурный коэффициент линейного расширения кремния [19], B_0 модуль всестороннего сжатия, рассчитанный в минимуме полной энергии кристалла кремния для T = 0 [20]. Решеточная теплоемкость $C_{\nu}(T)$ была вычислена при помощи фононного спектра кремния [12]. Полученная по формуле (12) теоретическая зависимость $C_p(T)$ приведена на рис. 2. Фононный вклад в температурный ход энтальпии равен

$$\Delta H_{\rm ph}(T) = \int_0^T C_p(T') dT'. \tag{13}$$

Изменение энтальпии, обусловленное образованием электронно-дырочных пар, можно вычислить по формуле [22]

$$\Delta H_{e-h}(T) = n_{e-h}E_g(T) + T\Delta S_{e-h}(T), \qquad (14)$$

где n_{e-h} — концентрация электронно-дырочных пар, $\Delta S_{e-h}(T)$ — изменение энтропии. Расчеты показали, что вклад $\Delta H_{e-h}(T)$ составляет пренебрежительно малую величину по сравнению с фононным вкладом $\Delta H_{\rm ph}(T)$.

Рис. 3. Зависимость $\Delta H(T) = K |\Delta E_g(T)|$ для кремния. *a* — данная работа, *b* — эксперимент [17,21]. *T*, K: *I* — 300, *2* — 250, *3* — 200, *4* — 100.

На рис. 3 представлена рассчитанная в данной работе зависимость $\Delta H_{\rm ph}(T) = K' |\Delta E_g(T)|$ в сравнении с экспериментально полученной (1). Видно, что в рамках предложенной схемы расчета наблюдается линейная связь между $\Delta H_{\rm ph}(T)$ и $\Delta E_g(T)$. В появлении такой корреляции, по всей видимости, ЭФВ играет определяющую роль. Вместе с тем, теоретический коэффициент K' существенно больше соответствующего экспериментального значения. Данное различие обусловлено несовпадением рассчитанной зависимости $\Delta E_g(T)$ с экспериментальной (рис. 1), так как вычисленная решеточная темплоемкость $C_p(T)$ (рис. 2), а следовательно, и $\Delta H_{\rm ph}(T)$ хорошо согласуются с результатами измерений [14,21].

Основная причина того, что рассчитанный фононный вклад в уменьшение ширины запрещенной зоны кремния с ростом температуры не восстанавливает экспериментальную зависимость $\Delta E_{g}(T)$, видится в том, что фононный вклад не является единственным. Необходим последовательный учет других элементарных возбуждений и взаимодействий, в частности, экситонфононного взаимодействия. Определенную погрешность вносит также используемое при получении формулы (10) приближение жесткого потенциала. Однако учет дополнительных слагаемых в изменении одноэлектронного эффективного потенциала (7), обусловленных кулоновским и обменно-корреляционным взаимодействием электронов, существенно усложняет и без того трудоемкую вычислительную процедуру. В связи с вышесказанным предложенную расчетную схему все-таки следует рассматривать как начальное приближение в направлении изучения и понимания физических причин существующей взаимосвязи между структурой электронного энергетического спектра и термодинамическими функциями полупроводниковых кристаллов.

Список литературы

- N.N. Sirota. Semiconductors and Semimetalls, ed. by. P.K. Willardson, A.C. Beer (N.Y., Acad. Press, 1968) v. 4, p. 35.
- [2] В.М. Фридкин. Сегнетоэлектрики полупроводники (М., Наука, 1976) с. 31.
- [3] Н.Ф. Мотт. Переходы металл-изолятор (М., Наука, 1979) с. 35.
- [4] Е.Г. Максимов, Д.Ю. Саврасов, С.Ю. Саврасов. УФН, 167, 353 (1997).
- [5] Е.Г. Бровман, Ю.М. Каган. УФН, **112**, 369 (1974).
- [6] P.B. Allen, V. Heine, J. Phys. C: Sol. St. Phys., 9, 2305 (1976).
 [7] S. Zollner, M. Cardona, S. Gopalan. Phys. Rev. B, 45, 3376
- (1992).
- [8] P. Lautenschlager, P.B. Allen, M. Cardona. Phys. Rev. B, 31, 2163 (1985).
- [9] M. Klenner, C. Falter, W. Ludwig. Ann. Phys., 1, 34 (1992).
- [10] А.Ф. Ревинский. ФТТ, 37, 2841 (1995).
- [11] А.Ф. Ревинский. Весці АНБ. Сер. фіз.-мет. навук, 2, 47 (1992).
- [12] А.Ф. Ревинский. Вестн. БГУ. Сер. 1, 2, 33 (1994).
- [13] G.B. Bachelet, D.R. Hamman, M. Schlüter. Phys. Rev. B, 26, 4199 (1982).
- [14] Физико-химические свойства полупроводниковых веществ. Справочник (М., Наука, 1978) с. 14.
- [15] D.J. Chadi, M.L. Cohen. Phys. Rev. B, 8, 5747 (1973).
- [16] М.А. Золотарев, А.С. Поплавной. Изв. вузов. Физика, 5, 78 (1983).
- [17] W. Bludau, A.Onton. J. Appl. Phys. 45, 1846 (1974).
- [18] А.Ф. Ревинский. Изв. вузов. Физика, 8, 3 (1996).
- [19] С.И. Новикова. *Тепловое расширение твердых тел* (М., Наука, 1974) с. 290.
- [20] А.Ф. Ревинский. Изв. вузов. Физика, 1, 123 (1994).
- [21] Свойства элементов, ч. 1: Физические свойства, под. ред. Г.В. Самсонова (М., Металлургия, 1976) с. 150.
- [22] K.P. O'Donnell, X. Chen. Appl. Phys. Lett., 58, 2924 (1991).

Редактор Л.В. Шаронова

On the correlation between the temperature dependence of the energy gap and enthalpy of semiconductor crystals

A.F. Revinsky

State University of Brest, 224665 Brest, Belarus

Abstract The first-priciples pseudopotential method within the density-functional theory is used for the study of electron-phonon interactions in silicon. The temperature shift of the indirect band gap, the phonon spectrum and enthalpy are calculated consistenly within the density-functional theory. The relationship between temperature dependences of energy gap $\Delta E_g(T)$ and enthalpy $\Delta H(T)$ is $\Delta H(T) = K |\Delta E_g(T)|$. The physical origin of this correlation is discussed.

Fax: (162)230996 E-mail: Rev@univer.belpak.brest.by