Использование твердофазного прямого сращивания кремния для формирования структур солнечных элементов с вертикальными *p*-*n*-переходами

© В.Б. Воронков, Е.Г. Гук, В.А. Козлов, М.З. Шварц, В.Б. Шуман

Физико-технический институт им. А.Ф.Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 9 декабря 1997 г. Принята к печати 23 декабря 1997 г.)

Разработана технология многопереходных кремниевых солнечных элементов, основанная на ионной имплантации и твердофазном прямом сращивании $p^+ - p - n^+$ -структур. Внутренний квантовый выход таких структур близок к единице в интервале длин волн 350 ÷ 900 нм.

Среди различных вариантов солнечных элементов. предназначенных для работы с концентраторами солнечного излучения, одним из наименее разработанных является конструкция многопереходных кремниевых солнечных элементов с вертикальными *p*-*n*-переходами (КСЭ ВП). Достоинства многопереходных КСЭ ВП неоднократно обсуждались [1-3]. Однако при этом отмечалось, что необходимы новые технологические решения, которые позволили бы реализовать на практике эти положительные качества. Основные трудности были связаны с необходимостью обеспечить пассивацию рабочей поверхности и малое последовательное сопротивление. В работах [2,3] приведены характеристики КСЭ ВП, полученных с помощью диффузионной сварки четырех кремниевых пластин со структурой $n^+ - p - p^+$. Диффузионная сварка проводилась в вакууме при 550°C, причем предварительно на пластины напылялся алюминий, а в ряде случае использовались силуминовые прокладки; после сварки стопка пластин разрезалась на отдельные элементы (рис. 1, *a*). Достоинство диффузионной сварки состоит в том, что она позволяет соединить большое количество пластин и при этом не предъявляет особых требований к качеству поверхности соединяемых пластин (например, поверхность может быть протравлена в КОН). Недостаток такой конструкции — наличие металлических прослоек на рабочей поверхности, что создает затенение (от 1 до 10%) и затрудняет химическую обработку и пассивацию поверхности. Возможно, лучшим технологическим вариантом, позволяющим избежать этих недостатков, может оказаться метод твердофазного прямого сращивания кремниевых пластин. В настоящее время этот сравнительно новый метод [4] используется в микроэлектронике и технике мощных полупроводниковых приборов для сращивания чистых полированных пластин кремния с разным типом проводимости либо с разным удельным сопротивлением; пластин, покрытых слоем SiO₂, а также пластин Si после ионной имплантации.

Цель настоящей работы — исследовать применение твердофазного прямого сращивания для формирования структур КСЭ ВП.

Для изготовления КСЭ ВП использовались промышленные полированные пластины *p*-Si, имеющие ориентацию (100), диаметр 60 мм, толщину 350 мкм, удельное сопротивление 40 Ом · см. Часть пластин использовалась для изготовления КСЭ ВП с помощью диффузионной сварки по методике [2], остальные — для прямого срацивания. В последнем случае с одной стороны пластин проводили ионное внедрение атомов бора, с противоположной стороны — фосфора (для каждой примеси

Рис. 1. Структуры кремниевых солнечных элементов с вертикальными p-n-переходами, полученные диффузионной сваркой (*a*) и прямым сращиванием (*b*); $1 - p^+$ -слой, $2 - n^+$ -слой, 3 - силумин, 4 - термокомпенсатор.

доза составляла 8 · 10¹⁶ см⁻²). После ионного внедрения отжиг не проводился, так как, согласно [5], аморфизация поверхности способствует сращиванию.

Непосредственно перед сращиванием пластины травились в HF, а затем проходили стандартный цикл кислотно-перекисных отмывок; на завершающей стадии которых проводилась обработка в разбавленной 2%-й НF с последующей гидрофилизацией поверхности в растворе NH₄OH:H₂O₂:H₂O (0.05:1:5) и окончательной промывкой в деионизованной воде с удельным сопротивлением ~ 18 МОм · см. Соединение и сращивание пластин проводилось согласно методике, описанной в работе [6].

Высокотемпературная термообработка соединенных пар проводилась на воздухе при 1100°С в течение 2ч, причем внешнее давление не прикладывалось. Сплошность сращивания и наличие "пузырей" на интерфейсе контролировались методом инфракрасной (ИК) фотометрии на телевизионной установке типа ПТУ-44. Координатное разрешение установки по площади составляло ~ 300 мкм с возможностью выявления пузырей с величиной оптического зазора между пластинами ≥ 0.25 мкм. Контроль сплошности сращивания показал, что пузыри практически отсутствуют, и только по краю пластин имелась узкая полоса, где не прошло сращивание. Толщины n^+ - и p^+ -слоев составляли около 2 мкм, поверхностная концентрация бора и фосфора равна $3 \cdot 10^{19} \text{ см}^{-3}$ и $6 \cdot 10^{19} \text{ см}^{-3}$ соответственно. Далее на внешние поверхности сращенных пластин напыляли алюминий при 350°С и проводили диффузионную сварку с пластинами низкоомного кремния, служившими в качестве термокомпенсаторов. Затем сформированная стопка пластин разрезалась на отдельные элементы размером $5 \times 1.4 \times 1$ мм (рис. 1, *b*). Поверхность элементов обрабатывалась с четырех сторон путем последовательной шлифовки, полировки и кислотного травления. Пассивирующее покрытие — слой SiO₂ толщиной 80 Å и двухслойное просветляющее покрытие из слоев Si₃N₄ и SiO₂ толщиной 550 и 400 Å соответственно наносились в установке ионно-плазменного распыления в едином вакуумном цикле аналогично [3]. Время жизни неосновных носителей заряда измерялось методом Лэкса [7] и составляло 48÷50 мкс при обоих методах формирования КСЭ ВП. Спектральная зависимость коэффициента отражения (R) для сращенных образцов представлена на рис. 2 кривой 1. Благодаря двухслойному просветляющему покрытию величина R < 5% в интервале длин волн $\lambda = 550 \div 850$ нм, причем минимальное отражение при $\lambda \approx 650$ нм. Спектральная зависимость для коэффициента собирания носителей $Q(\lambda)$ того же образца представлена на рис. 2 кривой 2, а для внутреннего квантового выхода $Q(\lambda)/[1 - R(\lambda)]$ — кривой 3 того же рисунка. Внутренний квантовый выход близок к 1 в широком диапазоне длин волн (350 ÷ 900 нм).

Плотность тока короткого замыкания (j_{sc}) рассчитывалась из спектральных характеристик КСЭ ВП для спектра солнечного излучения AM1.5D (1000 Bт/м²), при

Рис. 2. Спектральные характеристики кремниевых солнечных элементов, полученные прямым сращиванием: 1 — коэффициент отражения *R* от лицевой поверхности. 2 — внешний коэффициент собирания Q, 3 — внутренний коэффицент собирания Q/(1-R).

800

λ, π m

1000

600

ſ 400

этом получено значение $j_{AM1.5D} = 39.43 \text{ мA/cm}^2$. Для внеатмосферных условий *j*_{АМ0} = 48.14 мА/см². Спектральная зависимость внутреннего квантового выхода КСЭ ВП близка к той, которая приведена в работе [8] для планарных солнечных элементов с пассивированным эмиттером (PESC), изготовленных из низкоомного кремния и имеющих текстурированную поверхность, двойное антиотражающее покрытие и затенение металлом 4% площади. Величины *jsc*, полученные нами (34 ÷ 38.7 мА/см²), также близки к приведенным в работе [8] величинам $j_{sc} = 36.7 \div 37 \text{ мA/см}^2$ для условий AM1.5. Высокая чувствительность в ультрафиолетовой

¥ 0.3 -0.2 0.1 Π 0.2 0.4 0.6 0.8 V.V Рис. 3. Нагрузочные характеристики кремниевых солнечных элементов с двумя *p*-*n*-переходами при интенсивности осве-

щения 100 мВт/см² (АМ1.5). Солнечные элементы сформиро-

ваны: 1 — прямым сращиванием, 2 — диффузионной сваркой.

1200

Рис. 4. Зависимости коэффициента заполнения (FF) и кпд η от степени концентрирования солнечного излучения (AM1.5) для солнечных элементов, сформированных прямым сращиванием (1) и диффузионной сваркой (2).

области спектра позволяет оценить скорость поверхностной рекомбинации на основе данных [9], она не превышает 10⁴ см/с.

Нагрузочные характеристики КСЭ ВП, состоящих из двух последовательно соединенных *p*-*n*-переходов, измерялись под импульсным имитатором концентрированного солнечного излучения для условий AM1.5D. Характеристика одного из образцов, полученных с помощью прямого сращивания, при односолнечном освещении приведена на рис. 3 (кривая 1). Там же для сравнения приведена нагрузочная характеристика для КСЭ ВП с двумя *p*-*n*-переходами, полученными с помощью диффузионной сварки (кривая 2 того же рисунка). У "сварного" КСЭ плотность тока короткого замыкания несколько ниже ($j_{AM1.5D} = 34 \text{ мA/см}^2$) вследствие того, что у этого образца минимум отражения лежит в инфракрасной области (≈ 800 нм). Зависимости коэффициента заполнения (FF) и коэффициента полезного действия η от степени концентрирования солнечного излучения для тех же образцов приведена на рис. 4. Видно, что коэффициент заполнения у "сращенного" образца значительно меньше, чем у "сварного", имеющего поверхностную концентрацию в диффузионных слоях $\sim 10^{20}\,{\rm cm}^{-3}$ и сплошную металлизацию поверхности на интерфейсе. Вследствие этого и кпд у первого образца ниже, тогда как у сварных образцов коэффициент заполнения доходил до 80 ÷ 82%, а кпд достигал величины 14.5% (AM1.5). Низкое значение FF связано, видимо, с тем, что ионное легирование не обеспечило достаточно высокую

поверхностную концентрацию примеси на интерфейсе, и это привело к повышенному последовательному сопротивлению. Для повышения величины коэффициента заполнения необходимо либо значительно увеличить дозу при имплантации примесей, либо использовать для прямого сращивания пластины кремния с диффузионными слоями. Однако для сращивания таких пластин требуется проведение дополнительных исследований, ввиду того что диффузия не сохраняет качество поверхности пластин.

Таким образом, многопереходные КСЭ ВП, впервые полученные с помощью твердофазного прямого сращивания, без использования фотолитографии и текстурирования поверхности, позволяют получить спектральные характеристики, не зависящие от длины волны в широком диапазоне длин волн.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, грант № 96-02-17902.

Список литературы

- [1] А. Фаренбрух, Р. Бьюб. Солнечные элементы. Теория и эксперимент (М., Энергоатомиздат, 1987) с. 182.
- [2] Е.Г. Гук, Н.С. Зимогорова, М.З. Шварц, В.Б. Шуман. ЖТФ, 67 (2), 129 (1997).
- [3] Е.Г. Гук, Т.А. Налет, М.З. Шварц, В.Б. Шуман. ФТП, 31 (7), 855 (1997).
- [4] J.B. Lasky. Appl. Phys. Lett., 48 (1), 78 (1986).
- [5] F. Fujino, M. Matsui, T. Hattori, Y. Hamakawa. Jap. J. Appl. Phys., 34, 1322 (1995).
- [6] I.V. Grekhov, V.A. Kozlov, V.A. Volle, V.B. Voronkov. In: Best of Soviet Semicond. Phys. and Technol. 1989–1990, ed. by M. Levinstein and M. Shur (World, Scientific, 1995) p. 597.
- [7] D. Lax, S.F. Neustadter. J. Appl. Phys., 25, 1148 (1954).
- [8] J. Zhao, M.A. Green. Trans. El. Rev., ED-38 (8), 1925 (1991).
- [9] K. Morita, T. Saitch, T. Uematsu, Y. Kida, S. Kokunai, K. Matsukuma. Jap. J. Appl. Phys., P. 2. Letters, 26 (5), L547 (1987).

Редактор Т.А. Полянская

Using the direct wafer bonding for the fabrication of solar cell structures with the vertical p-n-junctions

V.B. Voronkov, E.G. Guk, V.A. Kozlov, M.Z. Shvarts, V.B. Shuman

A.F.loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia

Abstract Multijunction silicon solar cell technology has been developed. This technology based on ion implantation and direct wafer bonding of $p^+ - p - n^+$ -structures. The internal quantum yield of such structures is near 1 in the wavelength range of $\lambda = 350 \div 900$ nm.

E-mail:mevel@theory.ioffe.rssi.ru