Фазовые состояния и магнитная структура сверхпроводящих включений свинца в узкощелевой полупроводниковой матрице

© С.Д. Дарчук, Т. Дитл*, Л.А. Коровина, С. Колесник*, М. Савицкий*, Ф.Ф. Сизов

Институт физики полупроводников Национальной академии наук Украины, 252028 Киев, Украина * Институт физики Польской Академии наук, PL 02668 Варшава, Польша

(Получена 2 июля 1997 г. Принята к печати 10 ноября 1997 г.)

С помощью SQUID-магнетометра в области температур 1.7 ÷ 20 К и магнитных полей до 1 кЭ проведены исследования узкощелевого полупроводника PbTe *n*- и *p*-типа проводимости. Показано, что в матрице свинца имеются микроскопические включения сверхпроводящего свинца с минимальными размерами ~ 1300 Å, с концентрацией атомов свинца в них ~ $(1 \div 5) \cdot 10^{18}$ см⁻³ и фазовым переходом, характерным для сверхпроводников II рода.

Введение

Исследования взаимодействия в системе контактов полупроводник-сверхпроводник представляет научный и прикладной интерес в связи с возможностью управления характером взаимодействия в такой системе внешним магнитным полем.

В отличие от джозефсоновских контактов, в которых между двумя сверхпроводящими фазами используется тонкий слой диэлектрика (окисел металла толщиной $d \approx 10$ Å), параметры которого трудно контролируемы и нестабильны, использование полупроводника в качестве среды раздела сверхпроводящих фаз позволяет значительно увеличить толщину границы раздела и, как следствие, увеличить степень контролируемости ее параметров, а также стабильность ее характеристик. С этой точки зрения интерес представляют работы по созданию сверхмалошумящих полупроводниковых транзисторов со сверхпроводящими стоком и истоком. Реально такие транзисторы были реализованы, например, в структурах на основе InAs со стоком и истоком из Nb, использующих эффект взаимодействия туннельного тока (куперовских пар) с двумерным электронным газом [1].

О физических процессах и характере взаимодействия в системе полупроводник-сверхпроводник во внешнем магнитном поле можно сделать заключение, изучая поведение системы полупроводниковой матрицы со сверхпроводящими включениями. Исследование поведения такой системы представляет и самостоятельный интерес, так как существенную роль на характер взаимодействия электронной подсистемы со сверхпроводящими микроскопическими включениями должны оказывать размеры самих включений, в связи с тем что условия проникновения магнитного поля зависят от размеров сверхпроводника [2].

По-видимому, наиболее подходящими объектами для наблюдения эффекта туннелирования куперовских пар между сверхпроводящими включениями в полупроводниковой матрице являются узкощелевые полупроводники, так как вследствие относительно малой энтальпии образования вакансий в металле, а также вследствие, например, концентрационного переохлаждения при их выращивании обычными методами из расплава или паровой фазы, эти полупроводники характеризуются наличием включений, обогащенных металлами (см., например, [3,4]). Наличие среди компонентов полупроводника сверхпроводящих металлов (например, Hg, Pb, Sn и т.д.) позволяет в принципе наблюдать эффект туннелирования куперовских пар между сверхпроводящими включениями, что и наблюдалось, например, при исследовании переноса носителей заряда в магнитном поле в HgSe [5], а также в низкоразмерных и эпитаксиальных слоях PbTe [6,7].

Однако исследования этих явлений не дают возможность сделать заключения о фазовом состоянии включений в магнитном поле при температурах ниже температуры сверхпроводящего перехода. Для достижения этой цели необходимы исследования процессов намагничивания. В связи с малыми изменениями диамагнитной составляющей при переходе микровключений в сверхпроводящее состояние и в связи с их, как правило, малой концентрацией, заключения о фазовом состоянии и магнитной структуре сверхпроводящих микровключений можно сделать лишь с помощью высокочувствительной системы, которой является, например, SQUID-магнетометр.

В настоящей работе, в области температур 1.7–20 К с использованием SQUID-магнетометра¹, выполнены исследования характера поведения диамагнитной составляющей магнитной восприимчивости микровключений свинца (температура сверхпроводящего перехода $T_c = 7.15$ К) в нелегированной полупроводниковой матрице PbTe *n*- и *p*-типов проводимости. Для исследований использованы кристаллы, полученные методом Бриджмена и Чохральского.²

¹ Исследования диамагнитного вклада сверхпроводящих включений Рb в общую магнитную восприимчивость матрицы монокристаллов PbTe выполнены в Институте физики Польской Академии наук.

² Авторы благодарят В.М. Лакеенкова за предоставление некоторых кристаллов для исследований.

На рис. 1 для одного из монокристаллических образцов *n*-PbTe, вырезанного в плоскости (001), показаны температурные зависимости намагниченности при различных значениях внешнего магнитного поля. Такие образцы *n*-типа проводимости выращивались с некоторым избытком металлической компоненты в расплаве, и, как правило, в них наблюдаются микровключения Pb в матрице. Как видно из рис. 1, на температурных зависимостях M = f(T) — на фоне постоянного диамагнетизма матрицы PbTe — в области температур $T \approx 7$ K при относительно слабых внешних магнитных полях H < 600 Э происходит резкое увеличение диамагнитного сигнала, что и обусловлено переходом включений свинца в сверхпроводящее состояние.

Можно отметить, что с увеличением магнитного поля происходит плавное уменьшение диамагнитной добавки, что характерно для фазовых переходов II рода, хотя свинец является сверхпроводником I рода. Подобное изменение типа перехода связано с уменьшением размеров (толщины сверхпроводника в направлении, перпендикулярном направлению магнитного поля, см., например, [8]). Для подтверждения этого предположения были исследованы магнитополевые зависимости намагниченности при различных температурах (рис. 2, *a*), из которых была получена зависимость диамагнитной добавки от магнитного поля (рис. 2, *b*, кривая *I*), что в свою очередь позволило определить при T = 4.2 К значение 2-го критического поля $H_{c2} \approx 950$ Э и область

Рис. 1. Зависимость намагниченности *М* монокристаллического образца *n*-PbTe от температуры *T* при значениях внешнего магнитного поля *H*, Э: *I* — 600, *2* — 200, *3* — 80.

Рис. 2. a — магнитополевые зависимости намагниченности монокристаллического образца n-PbTe при температурах T, K: 1 - 1.7, 2 - 4.2, 3 - 5.5, 4 - 6.5; b - зависимость диамагнитной добавки намагниченности <math>M от магнитного поля H при T = 4.2 К для образцов: 1 - n-PbTe, 2 -Pb.

существования смешанного состояния в интервале от 480 до 950Э. Как видно из рисунка, с уменьшением температуры увеличиваются значения 1-го и 2-го критических полей. На рис. 2, *b* кривой 2 представлена также зависимость M = f(T) для относительно толстого (≈ 0.5 мм) образца чистого Pb. Зная объемы образцов Pb и PbTe, а также абсолютные значения диамагнитных сигналов, можно оценить концентрации атомов Pb в матрице PbTe, которая для исследованных образцов оказалась равной $N \approx (1 \div 5) \cdot 10^{18}$ см⁻³.

Рис. 3. a — зависимость намагниченности M образца n-РbTe в зависимости от величины H и направления изменения магнитного поля, T = 4.2 K; b — разность намагниченности M образца n-РbTe при противоположных направлениях изменения внешнего магнитного поля в зависимости от величины магнитного поля H при температурах T, K: 1 - 1.7, 2 - 4.2.

Продифференцировав кривую *I*, представленную на рис. 2, *b*, можно заметить область $H'_{c1} \approx 190 \Im < H < H_{c1} \approx 480 \Im$ с нехарактерным для сверхпроводника II рода ходом кривой M = f(T)

(наличие перегиба в точке H'_{c1}). Это по-видимому, связано с существованием дисперсии размеров включений и, следовательно, реальная область существования смешанного состояния должна находиться в границах $H'_{c1} < H < H_{c2}$. Для доказательства этого утверждения были проведены исследования гистерезиса намагниченности, возникающего в данной системе (рис. 3, a). Разность между кривыми намагниченности в зависимости от магнитного поля при противоположных направлениях изменения $(H \uparrow u H \downarrow)$ представляет собой динамику захвата магнитного потока (рис. 3, b) и дает возможность сделать заключение о существовании 3 областей: 1 — область сверхпроводящей фазы (0 < H < H'_{c1}), 2 — область сверхпроводящей фазы и смешанного состояния $(H'_{c1} < H < H_{c1})$, 3 — область смешанного состояния $(H_{c1} < H < H_{c2})$.

Первое критическое поле H'_{c1} относится к включениям минимального размера, H_{c1} — максимального. Дополнительное подтверждение сказанному было получено при исследовании образцов PbTe p-типа проводимости, которые выращивались из стехиометрических расплавов. Такие образцы, как правило имеют недостаток металлической компоненты в матрице по сравнению с халькогеном. Поэтому в данном случае концентрация микровключений должна быть значительно ниже, чем в образцах *n*-PbTe, и можно было ожидать в основном преобладания включений малого размера. Микровключения Рb в матрице инициируются низкой энтальпией образования вакансий по Шоттки в металлической подрешетке РbTe $(\Delta H_{\nu}^{M} \cong 0.45 \, \text{эВ} \, [4])$. Действительно, в этом случае кривая магнитополевой зависимости намагниченности имеет только одно значение 1-го критического поля $H_{c1} \approx 190$ Э и величину $H_{c2} \approx 950$ Э, что соответствует сделанным предположениям.

Дальнейшее изложение относится к включениям минимального размера, поскольку в этом случае для оценок можно использовать достаточно простые математические выражения, применяющиеся для описания явлений в сверхпроводниках II рода. В соответствии с выражением [8]

$$H_{c2} = H_b \left[1 - (2\lambda/d) \operatorname{th}(d/2\lambda) \right]^{-1/2}$$

где H_b — критическое магнитное поле в случае объемного материала, при котором происходит фазовый переход 1-го рода (в случае свинца $H_b(T = 4.2 K) = 350 \Theta$), λ глубина проникновения магнитного поля в сверхпроводник (в случае Pb $\lambda \approx 500$ Å) [9]. Зная величину H_{c2} , можно определить значение толщины включений минимального размера в направлении, перпендикулярном магнитному полю, которая оказалась равна $d \approx 1300$ Å. Отсутствие изменения хода магнитополевых зависимостей от ориентации магнитного поля относительно кристаллографических осей кристалла позволяет сделать предположение, что подобные включения представляют собой объекты либо сферической, либо нитевидной структуры.

Рис. 4. Зависимость периода *L* одномерной решетки вихревых нитей от магнитной индукции *B*: *I* — экспериментальные данные, *2* — расчет для квадратной решетки, *3* — расчет для треугольной решетки, *4* — соответствует выражению $B = \Phi_0/3L^2$.

Как известно, проникновение магнитного поля в сверхпроводник в области смешанного состояния происходит в виде квантованных вихревых нитей. Каждая такая нить (или вихрь) имеет нормальную сердцевину, которая представляет собой длинный тонкий нормальный цилиндр с радиусом порядка длины когерентности ξ , вытянутый вдоль направления внешнего магнитного поля. Вокруг этого нормального цилиндра течет незатухающий сверхпроводящий ток, захватывающий область радиуса порядка λ . Можно оценить значение длины когерентности ξ , используя выражение [9]

$$H_{c2} = 1.69\sqrt{2} \left(\lambda/\xi\right) H_b.$$

В данном случае $\xi \approx 650$ Å и, следовательно, диаметр нормальной сердцевины вихревой нити $2\xi \approx 1300$ Å. Вихри, проникнув в сверхпроводник, располагаются друг от друга на расстоянии порядка λ , образуя в поперечном сечении правильную треугольную (или четырехугольную) решетку. Таким образом, в нашем случае в области смешанного состояния формируется одномерная цепочка вихрей, каждый из которых несет один квант магнитного потока Φ_0 .

Ввиду малости размеров включений ($d \approx 1300$ Å) возможно проявление эффектов, характерных для двумерных или одномерных систем. Так, теория Kosterlitz– Thouless (см., например, [2]) предсказывает образование в таких системах антипараллельных пар флюксонов. Можно попытаться выявить подобные эффекты, проанализировав зависимость периода одномерной вихревой решетки от магнитной индукции В. Известно [10], что для решетки с одним квантом магнитного потока на нить, имеющей трансляционную симметрию, соответствующую квадратной решетке, соотношение между индукцией и периодом решетки L является достаточно простым: $B = \Phi_0/L^2$. Принимая во внимание данное соотношение и учитывая то, что при поле H_{c2} расстояние между ближайшими вихрями, т.е. период решетки, становится порядка ξ , можно получить из экспериментальных данных зависимость L = f(B), которая приведена на рис. 4, кривая 1. На этом же рисунке приведены теоретические зависимости для квадратной (кривая 2) и треугольной (кривая 3) решеток. Из рис. 4 видно, что теоретические кривые 2, 3 проходят значительно выше экспериментальной кривой 1. Подобное расхождение можно объяснить образованием антипараллельных пар флюксонов. В этом случае на Звихревых нити будет приходиться только 1 квант магнитного потока, направленный вдоль поля, и фактически величина индукции уменьшается в 3 раза. Кривая 4 на рис. 4 построена в соответствии с выражением $B = \Phi_0/3L^2$ и достаточно хорошо описывает данные, полученные из эксперимента.

Заключение

Показано, что независимо от типа проводимости монокристаллов PbTe и наличия избытка или недостатка металлической компоненты в расплаве в матрице монокристаллов PbTe наблюдаются включения сверхпроводящего Pb. Минимальные размеры микроскопических включений Pb составляют примерно 1300 Å, с концентрацией атомов Pb в них $(1-5) \cdot 10^{18} \, \text{см}^{-3}$. Поведение диамагнитной составляющей магнитной восприимчивости микровключений Pb описываются фазовым переходом (ФП), характерным для сверхпроводников II рода (хотя протяженные объекты Pb характеризуются ФП I рода). Микровключения Pb организуются в одномерные цепочки квантованных вихревых нитей в области смешанного состояния сверхпроводящей и нормальной фазы с размерами нормальной сердцевины нити порядка 1300 Å.

Список литературы

- T. Kawakami, H. Takayanagi. Jap. J. Appl. Phys., 26 (Suppl. 26–3), 2059 (1987).
- [2] T. Matsuda, S. Hasegawa, M. Igarashi, T. Kobayashi, M. Naito, H. Kajiyama, J. Endo, N. Odakabe, A. Tonomura, R. Aoki. Phys. Rev. Lett., 62, 2519 (1989).
- [3] Т.Т. Дедегкаев, В.А. Мошников, Д.Б. Чеснокова, Д.А. Яськов. Письма ЖТФ, 6, 1030 (1980).
- [4] F.F. Sizov, S.V. Plyatsko. J. Cryst. Growth, 92, 571 (1988).
- [5] A. Lenard, T. Dietl, M. Sawicki, W. Dobrowolski, K. Dybko, T. Skoskiwicz, S. Miotkowska, A. Witek, W. Plesiewicz, A. Mycielski. J. Low. Temp. Phys., 80, 15 (1990).

- [6] О.А. Миронов, Б.А. Савицкий, А.Ю. Сипатов, А.И. Федоренко, А.Н. Чиркин, С.В. Чистяков, Л.П. Шпаковская. Письма ЖЭТФ, 18, 100 (1988).
- [7] S. Takaoka, T. Sugita, K. Murase. Jap. J. Appl. Phys., 26 (Suppl. 26–3), 1345 (1987).
- [8] В.В. Шмидт. Введение в физику сверхпроводников (М., Наука, 1982).
- [9] D.R. Tilley, J. Tilley. *Superfluidity and Superconductivity* (Van Nostrand Reinhold Comp., 1974).
- [10] D. Saint-James, G. Sarma, E.J. Thomas. *Type II superconductivity* (Pergamon Press, 1969).

Редактор Т.А. Полянская

Phase states and magnetic structure of superconducting inclusions of lead in a narrow–gap semiconductor matrix

S.D. Darchuk, T. Ditl*, L.A. Korovina, S. Kolesnik*, M. Savitskii*, F.F. Sizov

Institute of Semiconductor Physics, National Academy of Sciences of the Ukraine, 252028 Kiev, the Ukraine * Institute of Physics, Polish Academy of Sciences, PL 02668 Warsaw, Poland