Стабилизация физических свойств твердых растворов Cd_xHg_{1-x}Se, легированных железом

© О.С. Романюк, С.Ю. Паранчич, Л.Д. Паранчич, В.Н. Макогоненко

Черновицкий государственный университет им. Ю. Федьковича, 274012 Черновцы, Украина

(Получена 30 июня 1997 г. Принята к печати 10 ноября 1997 г.)

Представлены результаты исследований электрических, гальваномагнитных свойств кристаллов $Cd_xHg_{1-x}Se$ (x = 0.23), легированных железом в различной концентрации в температурном интервале 77 \div 400 K и магнитных полях до 1.6 Тл. Установлено, что железо, введенное в матрицу кристалла, стабилизирует его физические свойства. Показано, что отжиг образцов в парах селена слабо влияет на их физические характеристики.

Новая группа бесщелевых и узкозонных разбавленных магнитных полупроводников A_{1-x}^{II} Fe_xB^{VI}, в которых магнитными ионами являются ионы железа, в последние годы привлекла широкое внимание [1-3]. Однако наиболее полно исследованы только кристаллы $Fe_rHg_{1-r}Se$. Ионы $Fe^{2+}(3d^6)$ являются примесями замещения в решетке HgSe и представляют собой нейтральные доноры. В отличие от ионов Mn²⁺ они образуют в зоне проводимости HgSe донорный уровень на расстоянии ~ 0.235 эВ от дна зоны. В твердых растворах Fe_xHg_{1-x}Se обнаружен целый спектр "аномальных" свойств, которые, согласно идее Мицельского [1], определяются кулоновской корреляцией между трехвалентными ионами Fe³⁺, образующимися в результате автоионизации ионов Fe²⁺. Эта корреляция приводит к упорядочению ионов Fe³⁺, т.е. к образованию локализованного вигнеровского кристалла заряженных ионов. Пространственное упорядочение ионизированных доноров сильно влияет на рассеяние носителей, вызывает тем самым аномальный рост подвижности в области низких температур.

Исследования кинетических и магнитотранспортных $Zn_xHg_{1-x}Se:Fe$ свойств твердых растворов и $Mn_xHg_{1-x}Se:Fe$ в широкой области температур $(T = 4.2 \div 300 \,\mathrm{K})$ и составов, когда уровень Fe²⁺ находится в зоне проводимости, [4] показали, что здесь, аналогично HgSe: Fe, также имеет место пространственная корреляция доноров. Результаты исследований спектров поглощения в Hg_{1-x-v}Cd_vFe_xSe (y = 0.5; x = 0.05) при 4.2 K [1] показывают, что при энергии, равной 170 ÷ 230 мэВ, наблюдается отчетливый порог, связанный с переходами между уровнем Fe²⁺ и зоной проводимости. Между 300 и 450 мэВ характерным для всех А^{II}В^{VI}, содержащих Fe²⁺, является поглощение, обусловленное внутрикристаллическим полем, вызванное переходами ${}^{5}E({}^{4}D) \rightarrow {}^{5}T_{2}({}^{5}D)$. При энергии 770 ÷ 780 мэВ наблюдаются переходы из валентной зоны в зону проводимости.

Цель настоящей работы — исследование влияния, которое оказывает наличие атомов железа и уровня Fe^{2+} на физические свойства узкозонных твердых растворов $Cd_xHg_{1-x}Se$.

В работе приведены результаты исследований транспортных свойств кристаллов $Cd_xHg_{1-x}Se:Fe$ такого состава, когда уровень Fe^{2+} расположен вблизи дна зоны проводимости, в температурном интервале 77 ÷ 400 К и магнитных полях до 1.6 Тл. Исследовано изменение физических свойств по длине выращенного кристалла, а также влияние термического отжига в парах селена на свойства $Cd_xHg_{1-x}Se:Fe$.

Селенид ртути со структурой сфалерита и селенид кадмия со структурой вюрцита образуют между собой сравнительно протяженную область твердых растворов $Cd_xHg_{1-x}Se$ [5]. Согласно [6], область гетерогенности лежит в пределах $x = 0.77 \div 0.81$. На рис. 1 представлено изменение структуры зон при переходе от HgSe к CdSe при 77 К. Зависимость энергии от состава вычислена исходя из зависимости $E_g(x)$, представленной в работе [7]. Положение уровня железа в кристаллах $Cd_xHg_{1-x}Se$ различного состава приведено с учетом его значений для крайних компонент (0.23 эВ выше дна зоны

Рис. 1. Изменение структуры зон твердых растворов Cd_xHg_{1-x} Se, содержащих донорный уровень Fe²⁺, при переходе от HgSe к CdSe при 77 K.

№ образца	77 K			300 K			
	$n_e, 10^{18} \mathrm{cm}^{-3}$	$\sigma,$ $10^3 \mathrm{Om^{-1}} \cdot \mathrm{cm^{-1}}$	μ , 10 ³ см ² /В · с	$n_e, 10^{18} \mathrm{cm}^{-3}$	$\sigma, 10^3 \mathrm{Om^{-1}} \cdot \mathrm{cm^{-1}}$	μ , 10 ³ см ² /В · с	
2	0.64	0.515	5.02	1.04	0.291	1.74	
3	0.562	0.305	3.39	0.575	0.173	1.88	
4	0.415	0.364	5.48	0.798	0.062	0.486	
5	0.869	1.31	9.42	1.33	0.572	2.7	
6	0.579	0.607	6.5	0.88	0.255	1.8	
7	0.979	0.791	5.05	1.45	0.429	1.84	
8	0.556	6.35	7.14	0.932	0.713	3.7	
10	0.816	1.65	13.0	1.19	0.713	3.7	
12	1.75	1.87	4.3	2.71	0.808	2.87	
13	1.56	2.45	9.8	1.97	0.998	3.15	
15	1.77	2.48	8.75	1.85	1.0	2.34	
16	1.7	2.49	9.2	2.4	0.996	2.58	
19	1.55	2.02	8.15	2.3	0.908	2.5	
20	1.55	2.06	8.3	2.56	0.845	2.06	
21	1.51	2.94	12.4	2.2	1.13	3.2	
22	1.58	2.93	8.7	1.8	1.18	2.78	
25	2.87	7.13	1.55	3.12	2.38	4.7	
26	1.47	2.64	11.2	2.17	1.08	3.09	
27	1.72	3.7	13.4	2.31	1.44	3.89	
28	3.54	3.55	17.4	4.62	9.89	4.79	

Таблица 1. Изменение электронной концентрации n_e , проводимости σ , подвижности μ образцов Cd_xHg_{1-x}Se (x = 0.23) вдоль кристалла при $N_{\rm Fe} = 5 \cdot 10^{19} \,{\rm cm}^{-3}$

проводимости в HgSe и 0.64 эВ выше потолка валентной зоны в CdSe) [1]. Из этой зависимости видно, что в окрестности $x = 0.23 \div 0.28$ уровень железа находится вблизи дна зоны проводимости.

Монокристаллы Cd_xHg_{1-x}Se:Fe (x = 0.23; концентрация Fe $N_{\rm Fe} = 2 \cdot 10^{18}$, $5 \cdot 10^{19}$ см⁻³) структуры цинковой обманки получены модифицированным методом Бриджмена при скорости роста 1.2 мм/ч и градиенте температуры у фронта кристаллизации 30 град/см. Для измерений использовались образцы размерами $1.5 \times 2.5 \times 10$ мм³, вырезанные перпендикулярно направлению роста. После механической обработки образцы химически травились 5%-м раствором брома в метиловом спирте. В качестве контактов использовались медные проволочные электроды, припаянные к образцам индием. Значения концентрации свободных носителей n_e и их подвижности μ определялись как $n_e = 1/|R|e$ и $\mu = R\sigma$ соответственно, где R — коэффициент Холла, σ — проводимость, Холл-фактор выбран равным 1.

В табл. 1 представлены электрические параметры образцов $Cd_xHg_{1-x}Se$ (x = 0.23), легированных Fe в концентрации $N_{Fe} = 5 \cdot 10^{19} \text{ мм}^{-3}$, при T = 77 и 300 K, вырезанных из различных участков монокристалла (порядок нумерации образцов соответствует направлению кристаллизации). Как следует из таблицы, в начальной части кристалла ($\sim 1/3$ от его длины) концентрация носителей находится на уровне ($5 \div 8$) $\cdot 10^{17} \text{ см}^{-3}$, а для остальных образцов (2/3 кристалла) концентрация носителей стабилизируется на уровне ($1.5 \div 1.8$) $\cdot 10^{18} \text{ см}^{-3}$.

На рис. 2 показана зависимость концентрации свободных носителей n_e от температуры для образцов $Cd_xHg_{1-x}Se$ (x = 0.23) с различной концентрацией железа. Видно, что эта зависимость аналогична таковой для $Zn_xHg_{1-x}Se$: Fe и $Mn_xHg_{1-x}Se$: Fe [4], т.е. для

Рис. 2. Температурные зависимости концентрации свободных носителей в образцах $Cd_xHg_{1-x}Se:Fe$ (x = 0.23) с $N_{Fe} = 5 \cdot 10^{19} \text{ см}^{-3}$, образец 15 (*I*, 3), и с $N_{Fe} = 2 \cdot 10^{19} \text{ см}^{-3}$, образец 8 (*2*, 4). *I*, 2 — до отжига, 3, 4 — после отжига в парах Se.

0.0527

	$N_{\rm Fe},$ $10^{19} {\rm cm}^{-3}$	77 K			300 K					
Образец		$n_e,$ 10 ¹⁸ см ⁻³	$\sigma, 10^3 \mathrm{Om}^{-1} \cdot \mathrm{cm}^{-1}$	$\mu, 10^3 \text{cm}^2/\text{B} \cdot \text{c}$	$n_e,$ 10 ¹⁸ см ⁻³	$\sigma, 10^3 \mathrm{Om}^{-1} \cdot \mathrm{cm}^{-1}$	μ , $10^3 \text{ cm}^2/\text{B} \cdot \text{c}$			
22	5.0	1.58	2.93	8.70	1.80	1.18	2.78			
15	5.0	1.77	2.48	8.75	1.85	1.00	2.34			
15, отжиг в Se	5.0	1.40	1.68	7.45	1.94	0.73	2.30			
8	0.2	1.18	2.78	14.7	1.70	0.88	4.26			
8, отжиг в Se	0.2	0.67	1.36	12.6	0.58	0.26	2.86			
6	0.0	0.475	0.81	10.7	0.495	0.19	2.39			

0.18

Таблица 2. Влияние отжига в парах Se на электрические свойства $Cd_xHg_{1-x}Se:Fe$ (x = 0.23)

23.2

образцов (как отожженных, так и неотожженных) с $N_{\rm Fe} = 5 \cdot 10^{19} \, {\rm cm}^{-3}$, концентрация свободных носителей увеличивается с температурой, тогда как для образцов с $N_{\rm Fe} = 2 \cdot 10^{18} \, {\rm cm}^{-3}$ она практически не зависит от температуры. При этом коэффициент Холла слабо изменяется с магнитным полем, имея тенденцию к увеличению с ростом поля для образцов с концентрацией железа $N_{\rm Fe} = 5 \cdot 10^{19} \, {\rm cm}^{-3}$.

0.0

0.048

Температурные зависимости проводимости чистых (не легированных Fe) образцов $Cd_xHg_{1-x}Se$, а также образцов $Cd_xHg_{1-x}Se$ (x = 0.23), легированных железом $(N_{\rm Fe} = 2 \cdot 10^{18}, 5 \cdot 10^{19} \,{\rm сm}^{-3})$, до и после термического отжига в парах селена приведены на рис. 3. Из рисунка следует:

а) для всех исследованных образцов имеет место полуметаллический ход проводимости с температурой, т.е. электронный газ сильно вырожден;

б) значения проводимости неотожженных образцов практически совпадают (кривые 1, 2, 4);

в) термический отжиг в парах селена наиболее существенное влияние оказывает на нелегированные образцы (ср. кривые 6, 7), причем проводимость образцов с кон-

Рис. 3. Температурные зависимости проводимости $Cd_xHg_{1-x}Se:Fe$ (x = 0.23) c N_{Fe} = 5 · 10¹⁹ cm⁻³, образцы 15 (1, 3) и 22 (2), $N_{\rm Fe} = 2 \cdot 10^{18} \, {\rm cm}^{-3}$ (4, 5) и N_{Fe} = 0 (6, 7). 1, 2, 4, 6 — до отжига, 3, 5, 7 — после отжига в парах Se.

центрацией железа $N_{\rm Fe} = 5 \cdot 10^{19} \, {\rm cm}^{-3}$ практически не изменяется с отжигом (кривые 1-3).

0.0235

2.78

Подвижности носителей для всех исследованных образцов имеют одинаковый температурный ход (рис. 4), т.е. с ростом температуры подвижность уменьшается, что характерно для халькогенидов ртути п-типа проводимости, причем практически совпадают между собой подвижности образцов, изготовленных из различных участков кристалла при $N_{\rm Fe} = 5 \cdot 10^{19} \, {\rm cm}^{-3}$ (кривые *1*, *2*). Для образцов с концентрацией носителей $< 5 \cdot 10^{19}$ см $^{-3}$ подвижность немного больше (кривая 4). Отжиг легированных образцов в парах селена незначительно уменьшает подвижность (кривые 3, 5), в то время как для образцов Cd_xHg_{1-x}Se отжиг в Se значительно увеличивает μ .

Электрические характеристики легированных и нелегированных образцов $Cd_xHg_{1-x}Se$, а также образцов, отожженных в парах селена, приведены в табл. 2. Как следует из таблицы, отжиг нелегированных образцов позволяет изменять концентрацию на порядок, а в образцах $Cd_xHg_{1-x}Se$, легированных железом с $N_{Fe} = 5 \cdot 10^{19} \text{ см}^{-3}$, концентрация свободных носителей с отжигом почти не изменяется.

Рис. 4. Температурные зависимости подвижности для образцов Cd_xHg_{1-x}Se: Fe с $N_{\text{Fe}} = 5 \cdot 10^{19} \text{ см}^{-3}$, образцы 15 (1, 3) и 22 (2), $N_{\rm Fe} = 2 \cdot 10^{18} \,{\rm см}^{-3}$ (4, 5) и $N_{\rm Fe} = 0$ (6, 7). *1, 2, 4, 6* — до отжига, *3, 5, 7* — после отжига в парах Se.

6, отжиг в Se

Обсуждение и выводы

При замещении части атомов ртути атомами кадмия в селениде ртути расстояние между зонами s- и р-симметрии уменьшается и при некотором содержании Cd инверсная зонная структура превращается в прямую (рис. 1). В случае бесщелевых кристаллов Cd_xHg_{1-x}Se с концентрацией железа, достаточной для фиксации уровня Ферми, концентрация электронов будет изменяться в некотором небольшом интервале при добавлении кадмия, и это изменение будет происходить до тех пор, пока существует пространственная корреляция заряженных доноров. В нашем случае уровень Fe²⁺ в $Cd_xHg_{1-x}Se$ (x = 0.23) находится на дне зоны проводимости или несколько ниже ее, поскольку кристаллы получены методом Бриджмена и начальная часть кристалла обогащена Cd. В таком случае ионы Fe находятся в состоянии с одинаковой валентностью Fe⁺, т.е. все доноры ионизированы. Поскольку система ионизированных доноров Fe³⁺ не строго периодична, определенный вклад в рассеяние электронов вносит неупорядоченное распределение ионов Fe³⁺ и уменьшение концентрации этих рассеивающих центров $N_{{\rm Fe}^{3+}} = n_e$ приводит к тому, что подвижность носителей почти одинакова для легированных и нелегированных образцов (рис. 4). Температурную зависимость концентрации носителей. т.е. рост концентрации с температурой, мы связываем с преимущественным нахождением железа в состояниях Fe³⁺. Как показали экспериментальные исследования магнитной восприимчивости [8,9], основное состояние иона Fe²⁺ в теэтраэдрическом кристаллическом поле является магнитным синглетом. В таком случае температурное изменение концентрации не должно наблюдаться. Что касается ионов Fe³⁺, то измерения ЭПР [10] показали, что основное состояние представляет собой орбитальный синглет с шестикратным вырождением по спину. Локальная симметрия является кубической, и спиновые расщепления четко выражены. Анализ температурной зависимости ширины линий ЭПР позволяет заключить, что при достаточно высоких температурах линия, обусловленная ионами Fe³⁺, уширяется вследствие столкновений с переворотом спина с зонными электронами.

Экспериментальные результаты свидетельствуют о том, что наблюдаемые явления в $Cd_xHg_{1-x}Se$: Fe в прямозонном случае не связаны с пространственной корреляцией примесных ионов, а связаны скорее всего с количеством собственных дефектов, которые образуются при кристаллизации. Анализ кристаллической структуры и химической связи позволяет выделить в твердых растворах $Cd_xHg_{1-x}Se$ три типа наиболее вероятных дефектов: вакансии селена (V_{Se}) — доноры; атомы ртути межузельные (Hg_i) — доноры; вакансии ртути (V_{Hg}) акцепторы. Железо, замещающее в $Cd_xHg_{1-x}Se$ атомы ртути, приводит к уменьшению количества собственных дефектов (например, вакансий Hg), что подтверждается и слабым влиянием отжига в парах Se на транспортные явления (табл. 2). Таким образом, из приведенных результатов исследований следует, что при перемещении резонансного уровня ближе к дну зоны проводимости пространственного упорядочения в системе доноров Fe^{3+} не наблюдается, при этом стабилизация свойств $Cd_xHg_{1-x}Se$, легированного железом, осуществляется за счет уменьшения количества собственных дефектов.

Список литературы

- [1] A. Mycielski. J. Appl. Phys., 63, 3279 (1988).
- [2] W.J.M. Jorge, H.J.M. Swagtent, C.E.P. Gerrits, A. Twardowski. Semicond. Sci. Technol., 5, S270 (1990).
- [3] A. Twardowski. J. Appl. Phys., 67, 5108 (1990).
- [4] W. Dobrowolski, R.R. Galazka, E. Grodzicka, J. Kossut, B. Witkowska. Phys. Rev. B, 48, 17848 (1993).
- [5] Н.П. Гавалешко, П.Н. Горлей, С.Ю. Паранчич, В.М. Фрасуняк, В.В. Хомяк. Неорг. матер., **17**, 327 (1983).
- [6] A. Kalb, V. Leut. Phys. St. Sol. (a), 5, K199 (1971).
- [7] C.J. Summersand, J.G. Broerman. Phys. Rev. B, 21, 559 (1980).
- [8] Z. Wilatowski, W. Jantsch, G. Hendorfer. Semicond. Sci. Thechnol., 5, S266 (1990).
- [9] Н.П. Гавалешко, С.Ю. Паранчич, Л.Д. Паранчич, М.Ф. Рыбак. Изв. вузов. Физика, 11, 48 (1990).
- [10] В.Д. Прозоровский, И.Ю. Решидова, С.Ю. Паранчич, Л.Д. Паранчич. ФТТ, **32**, 3290 (1990).

Редактор Л.В. Шаронова

Regulation of physical properties of Fe-doped $Cd_xHg_{1-x}Se$ solid solutions

O.S. Romanyuk, S.Yu. Paranchich, L.D. Paranchich, N.N. Makogonenko

Chernovtsy State University, 274012 Chernovtsy, Ukraine