Инфракрасные спектры отражения и спектры комбинационого рассеяния света твердых растворов Cu_xAg_{1-x}GaS₂

© И.В. Боднарь

Белорусский государственный университет информатики и радиоэлектроники, 220069 Минск, Белоруссия

(Получена 9 сентября 1997 г. Принята к печати 18 ноября 1997 г.)

На кристаллах соединений CuGaS₂, AgGaS₂ и твердых растворов на их основе исследованы спектры ИК отражения и спектры комбинационного рассеяния в поляризованном свете. Определены значения частот продольных и поперечных оптических фононов, коэффициенты затухания, ИК интенсивности, ε_0 и ε_{∞} . Построены концентрационные зависимости указанных параметров и установлен характер поведения оптических колебаний в твердых растворах.

Тройные соединения CuGaS₂, AgGaS₂ принадлежат к семейству полупроводников группы $A^{I}B^{III}C_{2}^{VI}$ и обладают интересными оптическими свойствами: значительным коэффициентом нелинейности, сильным двулучепреломлением, широким диапазоном прозрачности [1–3]. Наличие изотропной точки дает возможность использовать эти кристаллаы в качестве узкополосных фильтров в видимом и ближнем инфракрасном (ИК) диапазонах спектра [4,5].

В данной работе представлены результаты исследования колебательных спектров твердых растворов $Cu_xAg_{1-x}GaS_2$, образованных соединениями CuGaS₂, AgGaS₂, кристаллизующимися в структуре халькопирита (пространственная группа $D_{2d}^{12}-I\bar{4}2d$). Примитивная ячейка структуры таких кристаллов содержит две формульные единицы, что приводит к возникновению 21 оптической и 3 акустических фононных ветвей [6]. При этом оптические колебания классифицируются

$$\Gamma^{\text{opt}} = 1A_1(\Gamma_1) + 2A_2 + 3B_1(\Gamma_3) + 3B_2(\Gamma_4) + 6E(\Gamma_5).$$

Две A₂-моды являются неактивными. Три B₂- и шесть *E*-мод являются ИК активными и проявляются в поляризациях **E** || **C** и **E** \perp **C** соответственно. Остальные моды являются активными в спектрах комбинационного рассеяния (КРС) света.

Колебательные спектры этих материалов были изучены нами с помощью ИК спектров отражения и спектров КРС. Указанные измерения проводились на кристаллах, выращенных методом направленной кристаллизации расплава (горизонтальный вариант), по методике описанной в [7]. Состав кристаллов определяли рентгеновским методом, исходя и предположения о выполнении в системе закона Вегарда, а однородность контролировали с помощью микрорентгеноспектрального зондового анализа.

отражения регистрировали Спектры ИК на спектрофотометре "Perkin-Elmer-180" в области частот 150-450 см⁻¹ при комнатной температуре от поверхности (112) монокристаллов в поляризованном свете. Спектры КРС записывали на спектрометре "Spex-Romolog-4" приставкой, с позволяющей наблюдать КРС под углом 180°. Источником (модель возбуждения служил аргоновый лазер 165 фирмы Spectra Physics). Поляризационные измерения проводили при $\lambda_{\rm exc} = 5145$ Å в геометриях

Сиралетрия	CuGaS ₂					AgGaS ₂					Сириотрия
симметрия (халькоперит)	ИК отражение		КРС			ИК отражение		КРС			(сфадерия
	[12]	наши данные	[13]	[14]	наши данные	[12]	наши данные	[12]	[14]	наши данные	(сфалерит)
E (TO/LO)	-	-	75/76	75/76	75	65	_	34/34	36/36	33	X_5
$B_2 (TO/LO)$	-	-	259/284	95/95	95	-	-	65/66	65/65	65	W_4
B_1	-	_	138	116	-	-	-	54	125	-	W_2
E (TO/LO)	-	-	95/98	147/147	145/145	92	-	95/95	96	96	W_4
E (TO/LO)	156/160	158/160	147/167	167/167	166/166	161/166	160/164	157/160	160/161	160	W_3
B_1	-	-	203	238	-	-	-	190	-	190	X_3
E (TO/LO)	262/276	256/276	260/278	273/283	260/277	226/232	224/230	226/232	213/224	214/224	X_5
$B_2 (TO/LO)$	262/281	260/280	339/369	286/288	262/278	222/237	215/236	212/238	213/215	212/220	W_2
A_1	-	-	312	312	312	-	-	295	293	294	W_1
E (TO/LO)	332/352	330/350	335/352	332/352	332/352	325/349	324/346	324/349	-	325/348	W_4
B_1	-	-	243	401	-	-	-	334	-	-	W_2
$B_2 (TO/LO)$	363/384	362/390	371/402	367/393	366/393	370/396	368/292	367/399	367	366/398	Γ_{15}
E (TO/LO)	368/401	366/401	365/387	367/385	365/386	367/399	365/397	368/398	392	365/392	Γ_{15}

Значение частот *TO/LO*-фононов (см⁻¹) для соединений CuGaS₂ и AgGaS₂

Рис. 1. Концентрационные зависимости частот оптических фононов для твердых растворов $Cu_xAg_{1-x}GaS_2$, определенных по ИК спектрам отражения.

 (\perp, \perp) и (\parallel, \parallel) , в которых по правилам отбора должны проявляться *E*- и *B*₂-моды. Для повышения точности поляризационных измерений непосредственно перед образцом помещали призму Глана. Направление плоскости поляризации изменялось при помощи пластинки $\lambda/2$. Спектральная ширина щелей при измерениях не превышала 2 см⁻¹.

В спектрах отражения в поляризации $\mathbf{E} \perp \mathbf{C}$ как для соединений, так и для твердых растворов присутствуют по четыре полосы отражения. В то же время в спектре $\mathbf{E} \parallel \mathbf{C}$ присутствуют пять полос (при трех возможных по правилам отбора). Появление "лишних" полос в этой поляризации связано с тем, что спектры отражения регистрировали (как указано выше) от плоскости (112), которая с оптической осью составляет угол 35.3°. Это приводит к тому, что поляризация $\mathbf{E} \parallel \mathbf{C}$ осуществляется частично (~66%), поэтому в спектрах этой поляризации могут присутствовать ослабленные полосы из спектров поляризации $\mathbf{E} \perp \mathbf{C}$ [8–10]. Значения частот оптических фононов и их симметрия для тройных соединений приведены в таблице.

Снятые спектры обрабатывались методом последовательного ДА–К–К анализа, который обладает меньшими погрешностями, чем метод дисперсионного анализа (ДА) и метод Крамерса–Кронига (К–К) в отдельности. В методе ДА–К–К анализа Крамерса–Кронига применяется не к самой функции $R(\omega)$, а к функции, значения

Рис. 2. Концентрационные зависимости ИК интенсивностей (S_2) коэффициентов затухания (g_t) и диэлектрических постоянных (ε_{∞} и ε_0).

Рис. 3. Спектры КРС соединений CuGaS₂, AgGaS₂ и твердого раствора Cu_{0.5}Ag_{0.5}GaS₂ в поляризациях (\bot, \bot) и (\parallel, \parallel) .

Рис. 4. Концентрационные зависимости частот оптических фононов для твердых растворов Cu_xAg_{1-x}GaS₂, определенных из спектров КРС.

которой за пределами экспериментального интервала близки к нулю [11]. Такая функция получается после обработки спектров отражения методом ДА, в котором для $\varepsilon(\omega)$ используется выражение

$$\varepsilon(\omega) = \frac{\varepsilon_{\infty} \Pi(\omega_{l,n} - \omega^2 + i\omega \cdot g_{l,n})}{(\omega_{t,n}^2 - \omega^2 + i\omega g_{t,n})}.$$
 (1)

Из (1) были определены значения частот продольных $(\omega_{l,n})$ и поперечных $(\omega_{t,n})$ фононов, коэффициенты затухания $(g_{l,n}; g_{t,n})$, а также ε_{∞} . С помощью соотношений

$$S_n = \frac{\varepsilon_\infty}{4\pi(\omega_{l,n}^2/\omega_{t,n}-1)},\tag{2}$$

$$\varepsilon_0 = \varepsilon_\infty + \sum_n 4\pi S_n \tag{3}$$

были рассчитаны ИК интенсивности (S_n) и значения диэлектрической проницаемости (ε_0) .

На рис. 1 и 2 показаны зависимости значений параметров, полученных с помощью ДА, совмещенного

с анализом К–К от состава твердых растворов. Из приведенного рисунка видно, что по мере увеличения содержания в твердых растворах $Cu_xAg_{1-x}GaS_2$ атомов серебра изменения частот оптических фононов для обеих поляризаций носят монотонный характер — они плавно смещаются в низкочастотную область. Аналогичный характер проявляют параметры S_n , ε_0 , ε_∞ . Концентрационная зависимость коэффициентов затухания g_t для всех полос отражения имеет неаддитивный характер.

Спектры КРС соединений CuGaS₂, AgGaS₂ и твердого раствора Cu_{0.5}Ag_{0.5}GaS₂ представлены на рис. 3, а значения частот оптических фононов и их симметрия для тройных соединений приведены в таблице. Присутствие "лишних" полос в геометрии (||, ||) связано с причинами, указанными выше. Самые интенсивные полосы с $\omega = 312 \text{ см}^{-1}$ для CuGaS₂ и $\omega = 294 \text{ см}^{-1}$ для AgGaS₂, соответствующие колебаниям симметрии типа A_1 , присутствуют в обеих поляризациях, что связано как с причинами, описанными выше, так и с очень большим сечением рассеяния фононов данной симметрии. Аналогичные полосы проявляются и в твердых растворах Cu_xAg_{1-x}GaS₂.

Идентификация полос для твердых растворов проводилась на основе сравнения их со спектрами ИК отражения и спектрами КРС тройных соединений CuGaS₂ и AgGaS₂. Наиболее интенсивной полосой в твердых растворах (как и в соединениях CuGaS₂ и AgGaS₂) является полоса, соответствующая колебанию симметрии A_1 . Это чисто анионная полоса и соответствует колебаниям атомов серы при неподвижных остальных атомах. С изменением состава частота ее плавно изменяется от 312 см⁻¹ в CuGaS₂ до 294 см⁻¹ в AgGaS₂, а интенсивность остается практически неизменной (рис. 4).

Сравнение спектров ИК отражения и спектров КРС твердых растворов со спектрами бинарных аналогов $A^{II}B^{VI}$ и частотного положения соответствующих полос позволяет сделать вывод о том, что высокочастотные *E*- и *B*₂-моды, соотвествтующие Γ_{15} -модам структуры сфалерита, определяются колебаниями связи Ga–S, поскольку их частотное положение слабо изменяется с увеличением содержания в твердых растворах атомов серебра. Интенсивность этих полос при этом не изменяется.

Наиболее чувствительными к замещению атомов меди атомами серебра являются низкочастотные полосы Eи B_2 -мод, соответствующие X_5 -, W_4 - и W_2 -модам структуры сфалерита. Частоты их плавно изменяются с составом x от частот, характерных для CuGaS₂, к частотам, характерным для соединения AgGaS₂, при неизменной интенсивности. Из сказанного следует, что указанные моды соответствуют колебаниям связи Cu–(Ag)–S. Оставшиеся моды $E(X_s)$ и $B_2(W_4)$ вызваны колебаниями атомов S, Cu и Ag.

Таким образом, проведенные исследования показали, что оптические колебания в твердых растворах Cu_xAg_{1-x}GaS₂ проявляют одномодовый характер. Работа финансировалась Министерством образования Республики Беларусь.

Список литературы

- J.L. Shay, J.H. Wernick. Ternary chalcopyrite semiconductors: Growth, electronic structure and applications (N.Y., 1975).
- [2] I.T. Bodnar, I.V. Bodnar. Phys. St. Sol. (a), 121, K247 (1990).
- [3] В.Ю. Рудь, Ю.В. Рудь, И.В. Боднарь, Л.Г. Березуцкий. ФТП, 28, 2014 (1994).
- [4] В.В. Бадиков, И.Н. Матвеев, С.М. Пшеничников и др. Кристаллография, **26**, 537 (1981).
- [5] J.P. Laurenti. J. Appl. Phys., 56, 2479 (1984).
- [6] J.P. Kaminov, E. Buchler, J.H. Wernick. Phys. Rev. B, 2, 960 (1970).
- [7] И.В. Боднарь, Е.А. Кудрицкая. Неорг. матер., 33, 408 (1997).
- [8] N. Yamamoto, T. Miyauchi. Bull. Univ. Osaka Prefect. (a), 23, 147 (1974).
- [9] И.В. Боднарь, А.Г. Кароза, Г.Ф. Смирнова, Т.В. Смирнова. ЖПС, 53, 677 (1990).
- [10] И.В. Боднарь. ФТП, 31, 49 (1997).
- [11] В.М. Бурлаков, Д.Ф. Рзаев, В.Н. Пырков. Препринт ин-та спектроскопии АН СССР (Троицк, 1984).
- [12] W.H. Koschel, F. Sorger, Y. Baars. J. Phys. (France), 36, 177 (1975).
- [13] J.P. Van der Zeil, A.E. Meixner, H.M. Kasper, J.A. Ditzenberger. Phys. Rev. B, 9, 4286 (1974).
- [14] C. Carlone, D. Olego, A. Yayarama, M. Cardona. Phys. Rev. B, 22, 3877 (1980).

Редактор В.В. Чалдышев

Infra-red reflection spectra and spectra of combination light scattering of $CuGaS_2$; $AgGaS_2$ compounds and $Cu_xAg_{1-x}GaS_2$ solid solutions

I.V. Bodnar

Belarus State University of Information Science and Radioelectronics, 220069 Minsk, Belarus