О механизмах долговременной релаксации проводимости в компенсированном Si(B,S) и Si(B,Rh) при радиационном воздействии

© М.С. Юнусов, М. Каримов, Б.Л. Оксенгендлер

Институт ядерной физики Академии наук Республики Узбекистан, 702132 Улугбек, Узбекистан

(Получена 21 июля 1995 г. Принята к печати 14 июля 1997 г.)

В рамках трех механизмов (уровней прилипания, рекомбинации через уровни с большой релаксацией, разделения носителей пространственными неоднородностями) обсуждается наблюдаемая долговременная релаксация кинетики фототока в компенсированных образцах Si $\langle B,S \rangle$ и Si $\langle B,Rh \rangle$. Показано, что радиационное воздействие (γ -квантами ⁶⁰Со при различных температурах) в ряде случаев позволяет дифференцировать реализуемость указанных механизмов.

Долговременная релаксация (ДР) носителей тока, изученная на множестве полупроводниковых систем [1–10], представляет особый интерес в кремнии, компенсированном примесями с глубокими уровнями, поскольку именно в таком материале реализуются три основных механизма, ответственных за ДР:

— захват носителей на уровни прилипания [2,4-6];

 — рекомбинация через дефекты с большой релаксацией [3];

 — разделение носителей барьерами, обусловленными пространственными неоднородностями в распределении неэкранированных примесей [1,2,7–10].

Разделение этих механизмов представляется в ряде случаев нетривиальной задачей, и здесь существенным может оказаться метод радиационного воздействия. Далее представлены исследования именно этого плана.

Нами изучалась кинетика релаксации фотопроводимости в компенсированном материале Si $\langle B,S \rangle$ и Si $\langle B,Rh \rangle$ до и после облучения γ -квантами ⁶⁰Со при 77 К и при одинаковой интенсивности света (150 люкс). При этом приложенное напряжение было равно 1 В.

В качестве исходного материала использовался кремний *p*-типа с исходным удельным сопротивлением $1 \div 2 \,\mathrm{OM} \cdot \mathrm{cm}$ (при компенсации серой) и $7 \div 10 \,\mathrm{OM} \cdot \mathrm{cm}$ (при компенсации родием). Легирование осуществлялось методом термодиффузии в интервале температур $1250 \div 1290^{\circ}\mathrm{C}$ в течение $\sim 20 \,\mathrm{v}$. Этим удалось достичь средних концентраций $\bar{N}_{\mathrm{S}} \sim 10^{16} \,\mathrm{cm}^{-3}$ и $\bar{N}_{\mathrm{Rh}} \sim 5 \cdot 10^{15} \,\mathrm{cm}^{-3}$, а также $\bar{\rho} \sim (8{-}10) \cdot 10^4 \,\mathrm{Om} \cdot \mathrm{cm}$ в обоих типах образцов, при комнатной температуре.

Концентрации центров серы и родия определялись методом компенсации проводимости, т. е. $N_{S,Rh} = p_0 - p$, где p_0, p — концентрации дырок до и после диффузии S и Rh. Концентрации центров серы и родия варьировались путем изменения температуры диффузии; при этом воспроизводимость параметров образцов достигалась путем экспериментального подбора температуры диффузии с небольшим шагом (~ 5°C) для каждого конкретного исходного образца кремния *p*-типа.

Омические контакты изготовлялись методом вплавления A1 в вакууме при температуре $\sim 700^\circ C$ в течение ~ 30 с. Размер образцов был $6\times3\times0.6$ мм.

Облучение проводилось γ -источником с мощностью $\sim 2800 \text{ P/c}$ до доз $\sim 1 \cdot 10^9 \text{ P}$ при температуре канала $\sim 60^\circ \text{C}$.

Результаты исследований представлены на рис. 1. Спад фотопроводимости с достаточной точностью в общем виде можно представить выражением

$$I_p = A_1 \exp(-t/\tau_1)^{\beta_1} + A_2 \exp(-t/\tau_2)^{\beta_2},$$

где $A_1 \gg A_2$, $\tau_1 \ll \tau_2$, $[\beta_1, \beta_2] < 1$, причем A_j и τ_j (j = 1, 2) зависят от концентрации электрически активных атомов серы в p-Si \langle B,S \rangle и родия в p-Si \langle B,Rh \rangle (t — время наблюдения, τ_j — постоянная времени процесса) (рис. 1).

Облучение γ -квантами существенно изменяет кинетику ДР, причем наиболее чувствительной оказывается величина τ_2 : $d\tau_2/d\Phi > 0$, т.е. с ростом дозы облучения эта фаза ДР затягивается (рис. 2).

Рис. 1. Кинетика релаксации фототока в образцах *n*-Si{B,Rh} $(N_{\rm Rh}^d \sim 2.5 \cdot 10^{15} \,{\rm cm}^{-3})$ (*a*) и *n*-Si{B,S} (*b*) при различных концентрациях атомов серы $N_{\rm S}$ (измерения проводились при температуре 77 K): $I - \sim 8.5 \cdot 10^{15} \,{\rm cm}^{-3}$, $2 - \sim 9.1 \cdot 10^{15} \,{\rm cm}^{-3}$, $3 - \sim 1.1 \cdot 10^{16} \,{\rm cm}^{-3}$.

Рис. 2. Кинетика релаксации фототока в *n*-Si(B,Rh) (*a*) и *n*-Si(B,S) (*b*) при различных дозах облучения γ -квантами ⁶⁰Со (измерения проводились при температуре 77 K): *I* — до облучения; *2* — ~ 5 · 10⁷ Рад; *3* — ~ 5 · 10⁸ Рад.

Рис. 3. Зависимость τ от флюенса γ -квантов ⁶⁰Со в Si \langle B,Rh \rangle : 1 - 77 K, 2 - 300 K.

Существенно, что обнаруженная закономерность остается справедливой для различных температур измерения T = 77 и 300 K), причем скорость изменения τ_2 с дозой изменяется быстрее именно при низких температурах (рис. 3).

Полученные результаты позволяют достаточно убедительно провести анализ механизмов ДР.

Механизм уровней прилипания. Как показано в [2], если исходить их схемы затягивания релаксации за счет участия в кинетике процессов уровней прилипания, то критерием реализации этого механизма является выполнение неравенства $\tau_2 \leq \tau_{\max} \simeq (v \cdot \sigma_{\min} \cdot \Delta p)^{-1}$, где $\sigma_{\min} \ge (10^{-22} \div 10^{-23}) \text{ см}^2$ — минимальное сечение захвата носителей на локальный уровень [2,4]; $\Delta p = [N_{\text{S},N_{\text{Rh}}}] < 10^{16} \text{ см}^{-3}$, так как концентрация свободных дырок при освещении достигает $\sim (5-10) \cdot 10^{15} \text{ см}^{-3}$; $v \sim 10^7 \text{ см/с}$ — тепловая скорость электронов. Для этих величин получаем $\tau_{\max} \le 1$ с. Очевидно (см. рис. 1), что $\tau_2 \gg \tau_{\max}$, т.е. механизм уровнй прилипания в данном случае неэффективен.

Механизм рекомбинации через уровни с большой релаксацией. Для интерпретации результатов о существовании до облучения ДР и об ее усилении после радиационного воздействия можно предположить следующую схему. До облучения в образце имееется глубокий центр (M₁) с большой релаксацией, сечение рекомбинации через который зависит от температуры по закону $\sigma_1 = \sigma_0^{(1)} \exp(-E_1/kT)$, где E_1 — барьер рекомбинации, $\sigma_0^{(1)}$ — предэкспонента [11]. В результате радиационного воздействия генерируются вакансии (V)и собственные межузельные атомы (I), которые взаимодействуют с примесями (D) в образце, так что при этом либо увеличивается концентрация центра M_1 (что в эксперименте не обнаруживается), либо образуется новый радиационный центр (M_2) с большой релаксацией, у которого сечение захвата $\sigma_2 = \sigma_0^{(2)} \exp(-E_2/kT),$ причем $E_2 > E_1$. Этот центр обладает определенной кинетикой накопления, обусловленной конкретной схемой квазихимических реакций: $N_2 \sim f(t_{\rm irr})$, описываемой системой уравнений

265

$$\begin{cases} dV/dt = \lambda - k_1 V I - k_2 V D - V/\tau_V \\ dI/dt = \lambda - k_1 V I - I/\tau_I, \\ D \simeq \text{const}, \\ dN_2/dt = k_2 V D - N_2/\tau_D, \end{cases}$$

где V, I, D — концентрации соответствующих дефектов и примесей, τ_V , τ_I , τ_D — соответствующие им времена релаксации, λ — скорость введения первичных дефектов; k_1, k_2 — константы квазихимических реакций.

При начальных условиях t = 0, $V = I = N_2 = 0$ получаем

$$N_2 = N_2^{(\infty)} \Big(1 - e^{-t/\tau_D} \Big),$$
 rge $N_2^{(\infty)} = k_2 \lambda \tau_V D \tau_D.$

При решении этой системы, как обычно, предполагалось, что наиболее быстрым процессом является релаксация собственных межузельных атомов и $k_2 \ll k_1$. В этом случае выражение для τ_2 имеет вид

$$\tau_2 \simeq \left[N_1 v \sigma_1(T) + N_2 v \sigma(T) \right]^{-1}$$

Это дает

$$d au_2/d\Phi \sim d au_2/Idt = \left(d au_2/IdN_2\right)\left(dN_2/dt\right) \sim e^{E_2/dT},$$

что качественно согласуется с результатами, представленными на рис. 2 и 3. Следует, однако, отметить, что при этом концентрация центра M_1 должна уменьшаться, а концентрация центра M_2 увеличиваться до заметной величины N_2 , чего в эксперименте не обнаружено. Действительно, уменьшение концентрации центра M_1 мало ($N_{\rm S} \sim 10^{16}$ см⁻³ для Si \langle B,S \rangle а для Si \langle B,Rh \rangle $N_{\rm Rh} \sim 5 \cdot 10^{15}$ см⁻³), тогда как радиационный центр при наборе доз достигает концентрации $N_2 \sim 10^{15}$ см⁻³ [12].

Следовательно, можно сделать вывод о нереализуемости в данном случае механизма рекомбинации через уровни с большой релаксацией.

Механизм разделения носителей пространственными неоднородностями. Этот механизм связан с разделением неравновесных электронов и дырок барьерами, обусловленными флуктуацией концентрации примесей. Как известно [2], носители, разделенные такими барьерами, релаксируют с характерным временем

$$au = au_0 \exp(\Delta_0/kT),$$

где τ_0 — предэкспонента, Δ_0 — барьер между высокоомными (p) и низкоомными (p^+) областями в компенсированных образцах Si $\langle B, S \rangle$ и Si $\langle B, Rh \rangle$.

При воздействии радиации на образец, где эффективно идет образование различных комплексов из дефектов и примесей, уровень Ферми всей системы смещается, причем в низкоомных областях гораздо слабее, чем в высокоомных, так что барьеры, разделяющие эти области, растут с дозой облучения. Рассмотрим эффект, связанный с образованием дивакансий (W), поскольку другие комплексы (A-, E-, K-центры) в изучаемых нами образцах имеют уровни, расположенные далеко от уровня Ферми в высокоомных областях, т.е. в компенсации носителей практически не участвуют.

Кинетика квазихимических реакций в этом случае имеет вид

$$\begin{cases} dV/dt = \lambda - k_1 V I - k_2 V^2 - V/\tau_V + k_3 I W, \\ dI/dt = \lambda - k_1 V I - I/\tau_I - k_3 I W, \\ dW/dt = k_1 I V - I/\tau_I - k_3 I W \end{cases}$$

с начальными условиями t = 0, V = I = W = 0, где k_1 , k_2 , k_3 — константы квазихимических реакций, W — концентрация дивакансий.

Тогда при характерной иерархии скоростей процессов дефектообразования (dI/dt > dV/dt > dW/dt) имеем $I \simeq \lambda \tau_I; V|_{t\to\infty} \simeq \lambda \tilde{\tau}_V$ и $W(t) = k_2 \tilde{\tau}_V / k_3 \tau_I [1 - e^{-k_3 \tau_I t}]$, где $1/\tilde{\tau}_V = k_1 \lambda \tau_I + 1/\tau_V$. Дивакансии захватывают носители тока и компенсируют проводимость, что эффективно увеличивает барьер $\Delta > \Delta_0$. При этом для случаев контакта низкоомной и высокоомной областей¹ имеем соответственно: a) для p-Si — $\Delta = \Delta_0 + kT W(t)/n$; b) для n-Si — $\Delta = \Delta_0 + kT W(t)/n$. Это приводит соответственно к увеличенно времени жизни носителей тока: a) $\tau(t) = \tau_0 [1 + W(t)/n]; b$) $\tau(t) = \tau_0 [1 + W(t)/p]$. Очевидно, что с уменьшением температуры (от 300 до 77 K) величины n и p сильно падают, что приводит к усилению дозовой зависимости $\tau(t) \to \tau(\Phi)$ в соответствии с экспериментом (рис. 3).

Таким образом, при анализе результатов в рамках трех обсуждаемых механизмов необходимо отдать предпочтение последнему.

Можно ожидать [13], что в существенно неоднородных образцах, где Δ различны, будет иметь место не чисто экспоненциальный закон релаксации. Для многих случаев реализуется зависимость типа закона Кольрауша $\sim \exp(-t/\tau)^{\beta}$, где $\beta < 1$ [14]. С этой точки зрения были проанализированы экспериментальные результаты (рис. 2). Видно, что действительно $\beta = 0.89$.

Резюмируя, можно сказать, что радиационное воздействие является весьма эффективным средством для определения механизма долговременной релаксации фототока.

Список литературы

- [1] С.М. Рывкин. ФТП, 8, 373 (1974); ФТП, 11, 2378 (1977).
- [2] М.К. Шейнкман, А.Я. Шик. ФТП, 10, 209 (1976).
- [3] Deep centers in semiconductors, ed. by S. Pantelides (N.Y., P 1. Press, 1986) p. 950.
- [4] А.А. Лебедев, Н.А. Султанов, В.М. Тучкевич. ФТП, 5, 31 (1971).
- [5] А.А. Лебедев, А.Т. Мамадалимов, Ш. Махкамов. ФТП, 8, 262 (1974).
- [6] Ш. Махкамов, Н.А. Турсунов, М. Ашуров. В кн.: Фотоэлектрические явления в полупроводниках. (Тез. докл. Всес. конф.) (Ташкент, Фан, 1989) с. 326.
- [7] М.К. Бахадырханов. В сб.: Глубокие уровни в полупроводниках, под ред. В.И. Фистуля (Ташкент, 1981) с. 52.
- [8] М.К. Бахадырханов, С.З. Зайнабидинов. Узб. физ. журн., № 6, 5 (1991).
- [9] Б.З. Шарипов, Н. Норкулов, Х.Ш. Аскаров. В кн.: Фотоэлектрические явления в полупроводниках (Тез. докл. Всес. конф.) (Ташкент, Фан, 1989) с. 33.
- [10] Ш.И. Аскаров, Б.З. Шарипов. В кн.: Фотоэлектрические явления в полупроводниках (Тез. докл. Всес. конф.) (Ташкент, Фан, 1989). с. 237.
- [11] В.И. Фистуль. Введение в физику полупроводников (М., Высш. шк., 1984).
- [12] Дж. Миз, П. Глэрон. В кн.: Нейтронное трансмутационное легирование полупроводников (М., Мир, 1982)
 с. 239. [Пер. с англ. под ред. В.Н. Мордковича]. Neutron transmutaion doping in semiconductors, ed. by J.M. Meese (Plenum Press, N.Y.–London, 1979).
- [13] В.В. Емцев, Т.В. Машовец, Е.Х. Назарян. ФТП, 15, 1018 (1981).
- [14] Фракталы в физике, под ред. Л. Пьетронеро, Э. Тозатти (М., Мир, 1989).

Редактор В.В. Чалдышев

¹ Если считать флуктуации в распределении исходных носителей порядка \pm 5%, а компенсирующих примесей соответственно \pm 20%, то при полной компенсации реализуются области с различными ρ и типом проводимости (n^+ , p^+ , n, p), общий анализ роли которых в проводимости рассмотрен, например, в [12].

On the long range relaxation mechanisms of photocurrent in compensated Si $\langle B,S\rangle$ and Si $\langle B,Rh\rangle$ under irradiation

M.S. Yunusov, M. Karimov, B.L. Oksengendler

Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, 702132 Tashkent, s. Ulugbek

Abstract The experimental data of photocurrent long relaxation phenomenon in compensated samples of Si \langle B,S \rangle and Si \langle B,Rh \rangle have been treated on the basis of three mechanisms (sticking levels; recombination processes via great relaxation levels; separation of carriers in the field of spatial inhomogeneities). It is shown that in a number of cases the irradiation (by γ -rays of ⁶⁰Co at different temperatures) makes it possible to find dominating mechanisms (in this way the leading role of the third mechanism was established in our study).