Структура центров и механизмы высокотемпературного голубого излучения селенида цинка

© Г.Н. Иванова, В.А. Касиян, Н.Д. Недеогло, Д.Д. Недеогло, А.В. Симашкевич

Молдавский государственный университет,

277009 Кишинев, Молдова

(Получена 19 ноября 1996 г. Принята к печати 7 июня 1997 г.)

Изучены особенности температурного гашения интенсивности полос краевого излучения кристаллов *n*-ZnSe, отожженных в различных средах (вакуум, Zn, Se) в широком интервале температур. Обнаружена смена механизмов высокотемпературной экситонной люминесценции в коротковолновой области спектра (443 нм) с ростом температуры кристалла. Показано, что характер температурного гашения длинноволновой полосы краевого излучения (458 нм) свидетельствует о диссоциации ассоциативных центров свечения с ростом температуры образца.

Введение

Участие экситонов в формировании наиболее коротковолновых полос высокотемпературного краевого излучения селенида цинка обсуждалось при исследовании электро- [1], катодо- [2] и фотолюминесценции (ФЛ) [3] кристаллов. Отмечалось, что при температурах, близких к темпераутре жидкого азота, наиболее коротковолновое излучение с энергией 2.787 эВ обусловлено рекомбинацией свободных экситонов [3]. По мере увеличения температуры роль свободных экситонов в формировании полос краевого излучения ослабляется, и определяющим механизмом становится рекомбинация экситонов, связанных на ионизированных мелких донорах [2]. Было высказано также предположение о том, что более низкоэнергетическая полоса голубого излучения с максимумом при 2.706 эВ обусловлена рекомбинацией свободного электрона с дыркой на акцепторе [3].

Обнаруженные в данной работе особенности температурного гашения этих полос в спектрах излучения кристаллов *n*-ZnSe, отожженных в различных средах, позволяют с большей определенностью обсуждать механизмы излучательной рекомбинации и структуру центров свечения, ответственных за наблюдаемые полосы высокотемпературного излучения.

Изготовление образцов и условия эксперимента

В интервале температур от 82 до 400 К исследовались спектры исходных высокоомных кристаллов *n*-ZnSe, полученных из расплава, а также кристаллов, отожженых в вакууме и в расплавах цинка и селена в течение 100 ч при 950°С. В случае селеновой среды температура отжига варьировалась в интервале от 400 до 900°С с шагом в 100°С. По окончании всех отжигов образцы резко охлаждались до комнатной температуры. ФЛ возбуждалась монохроматическим светом от монохроматора VSU-1 с галогенной лампой, либо излучением лазера ЛГИ-21 длиной волны 337 нм. Спектры ФЛ исследовались с помощью монохроматора МДР-23 с линейной дисперсией 14 Å/мм в области длин волн от 430 до 500 нм.

Экспериментальные результаты и их обсуждение

Влияние среды и температуры отжига кристаллов *n*-ZnSe на спектры ФЛ при 82К показано на рис. 1, *a* и b соответственно. Видно, что независимо от среды и температуры отжига наблюдаются две узкие полосы А (443 нм, 2.799 эВ) и В (458 нм, 2.707 эВ) голубого излучения. В исходном кристалле полоса В имеет очень малую интенсивность. Отжиг кристаллов в жидком цинке практически полностью гасит эту полосу, в то время как отжиг в вакууме, а тем более в жидком селене, приводит к значительному росту интенсивности данной полосы ФЛ. Интересно отметить, что отжиг кристаллов в вакууме по своему воздействию на интенсивность В-полосы аналогичен отжигу в жидком Se с несколько меньшей эффективностью. Можно предположить, что в процессе высокотемпературного отжига кристаллов ZnSe в вакуумированной ампуле межузельные атомы Se выходят из кристалла, создавая паровую среду в ампуле, и кристалл отжигается в парах селена. Наиболее коротковолновая А-полоса ФЛ имеет малую полуширину (~ 4-5 нм) и локализована в области экситонного излучения.

С увеличением температуры отжига кристаллов в расплаве Se от 400 до 950°C интенсивность *В*-полосы возгорается, а интенсивность *А*-полосы уменьшается (рис. 1, *b*). Полуширина и спектральное положение наблюдаемых полос Φ Л не зависят от температуры отжига кристаллов.

Отжиг кристаллов ZnSe в расплаве Se при различных температурах не изменяет характер температурной эволюции спектров ФЛ. На рис. 2 приведена температурная эволюция спектров ФЛ кристаллов ZnSe после отжига в расплаве Se при 500° C (*a*) и 950° C (*b*). Видно, что увеличение температуры образца приводит к уменьшению интенсивности полос голубого излучения и их смещению в длинноволновую область спектра. Интенсивность *b*-полосы гасится значительно быстрее, чем интенсивность *A*-полосы.

Зависимости интенсивности А-полосы излучения от обратной температуры для кристаллов ZnSe:Se, отожженных при различных температурах, приведены

Рис. 1. Влияние среды (*a*) и температуры отжига (*b*) кристаллов *n*-ZnSe на спектры краевого излучения. T = 82 K. *a*) I — исходный кристалл; 2-4 — отожженный в жидком Zn, в вакууме и в жидком Se. *b*) температура отжига в жидком Se T_a , °C: I — неотожженный, 2 — 400, 3 — 700, 4 — 800, 5 — 950.

на рис. 3. В полулогарифмическом масштабе эти зависимости представляют собой прямые линии с двумя наклонами. Наличие двух наклонов обычно указывает донорно-акцепторный излучательной на механизм рекомбинации. Однако нами установлено, что энергетическое положение А-полосы не зависит от интенсивности возбуждения во всем исследованном интервале температур, что исключает донорноакцепторный механизм рекомбинации.

Из рис. З видно, что энергия активации температурного гашения люминесценции при низких температурах (T < 120-150 K) составляет (14–17) мэВ и изменяется незначительно с ростом температуры отжига кристаллов от 400 до 800°C. Увеличение температуры отжига до 950°C приводит к уменьшению значения этой энергии до 10 мэВ. В области высоких температур энергия активации температурного гашения люминесценции также слабо зависит от температуры отжига и составляет (42–43) мэВ, уменьшаясь до 35 мэВ при температуре, равной 950°C. С ростом температуры отжига кристаллов ZnSe: Se наблюдается уменьшение температуры излома кривых при переходе от низкотемпературного гашения к высокотемпературному, указанной стрелками на рис. 3.

Мы полагаем, что при низких температурах *А*-полоса обусловлена аннигиляцией свободных экситонов. Такое предположение основано на том, что, во-первых, разница

между шириной запрещенной зоны ($E_g = 2.812$ эВ при 77 К [1]) и энергий в максимуме А-полосы ($h\nu_{\rm max} = 2.793$ эВ) составляет 19 мэВ, а, во-вторых, энергия температурного гашения этой полосы в области низких температур составляет (14–17) мэВ. Видно, что обе эти величины близки к энергии связи свободного экситона, которая принимает значения в пределах от 16 [4] до 24 мэВ [5]. На экситонную природу этой полосы указывает и то обстоятельство, что отжиг кристаллов ZnSe в жидком цинке, способствующий совершенствованию кристаллической решетки, сильно увеличивает интенсивность А-полосы (рис. 1, *a*).

При температурах выше 150 К мелкие доноры в ZnSe находятся в ионизированном состоянии, что способствует образованию экситонов, связанных на ионизированных донорах. Энергия активации температурного гашения интенсивности *A*-полосы в этой области температур складывается из энергии ионизации мелкой донорной примеси ($E_d \sim 20$ мэВ) и энергии связи экситона с ионизированным донором ($E_b = E_g - h\nu_{max}(A) \sim (23-25)$ мэВ при 260 К), определенной из сопоставления зависимостей температурного смещения максимума этой полосы и ширины запрещенной зоны. В ZnSe такими мелкими донорами могут быть V_{Se} (14 мэВ), Al_{Zn} (19.5 мэВ), Ga_{Zn} (22 мэВ), In_{Zn} (24 мэВ) [6].

Температура, при которой кривая температурного гашения интенсивности А-полосы изменяет наклон

Рис. 2. Температурная эволюция спектров ФЛ кристаллов ZnSe, отожженных в жидком Se при 550°C (*a*) и 950°C (*b*). *T*, K: *a*) *1* — 82, *2* — 103, *3* — 112, *4* — 140, *5* — 174, *6* — 263. *b*) *1* — 82, *2* — 107, *3* — 158, *4* — 201.

(рис. 3), соответствует равному вкладу в интенсивность данной полосы обоих указанных выше механизмов экситонного излучения. Смещение этой температуры к низким значениям с увеличением температуры отжига кристаллов сопровождается уменьшением интенсивности А-полосы. Это уменьшение интенсивности полосы экситонной люминесценции обусловлено возрастающей ролью канала рекомбинации через связанные экситоны с увеличением температуры отжига кристаллов. Поскольку концентрация мелких ионизированных донорных примесей, в число которых входят и V_{Se}, уменьшается с ростом температуры отжига в Se за счет заполнения вакансий селена, интенсивность излучения, обусловленного рекомбинацией связанных экситонов, уменьшается, приводя к общему снижению интенсивности А-полосы свечения. На преобладающую роль V_{Se} в качестве дефекта, связывающего экситоны при высоких температурах отжига кристаллов ZnSe, указывает уменьшение энергии активации высокотемпературного гашения А-полосы, наблюдаемое в кристаллах, отожженых при 950°С (рис. 3).

Зависимость интенсивности В-полосы излучения от обратной температуры при различных температурах отжига кристаллов ZnSe в жидком Se приведена на рис. 4. Отсутствие смещения максимума этой полосы от интенсивности возбуждения, как и в случае А-полосы, позволяет исключить донорно-акцепторный механизм формирования данной полосы ФЛ. Наличие двух наклонов на кривой температурного гашения интенсивности В-полосы свидетельствует об изменении структуры центра свечения с ростом температуры кристалла при сохранении постоянного механизма излучательной рекомбинации. Мы полагаем, что при низких температурах имеет место рекомбинация свободного электрона с дыркой, локализованной на ассоциативном центре $(V_{Zn}D)$. Включение собственного дефекта V_{Zn} в состав ассоциата можно аргументировать тем, что при отжиге кристаллов в жидком Se, приводящем к росту концентрации V_{Zn} , интенсивность В-полосы резко возрастает, особенно при высоких температурах отжига, когда скорость генерации дефектов такого типа велика (рис. 1, b). В качестве до-

Рис. 3. Зависимости интенсивности *А*-полосы излучения кристаллов ZnSe: Se от обратной температуры. T_a , °C: 1 - 400, 2 - 500, 3 - 700, 4 - 800, 5 - 950. Цифры у различных участков зависимостей — энергия активации, мэВ.

Рис. 4. Зависимости интенсивности *В*-полосы излучения кристаллов ZnSe: Se от обратной температуры. T_a , °C: 1 - 400, 2 - 700, 3 - 800, 4 - 950. Цифры у различных участков зависимостей — энергия активации, мэВ.

Физика и техника полупроводников, 1998, том 32, № 2

Рис. 5. Люкс-яркостная характеристика *В*-полосы излучения кристалла ZnSe:Se. $T_a = 950^{\circ}$ C. *T*, K: 1 - 82, 2 - 126, 3 - 166. Угол наклона прямых α : 1, 2 - 1; 3 - 1.2.

нора, входящего в состав ассоциативного центра, могут быть элементы III и VII групп (Al, Ga, In, Cl).

По мере увеличения температуры кристалла выше (100-120) К имеет место термическая диссоциация сложного акцептора на простой акцепторный центр V_{Zn} и донорный центр. Глубина залегания простого центра V_{Zn} относительно потолка валентной зоны больше, чем ассоциативного (V_{Zn}D), что и приводит к большей энергии активации температурного гашения В-полосы в высокотемпературной области (~ 70 мэВ) (рис. 4). Освободившиеся после распада ассоциативных акцепторов доноры в области температур выше (100-150) К находятся преимущественно в ионизированном состоянии, что увеличивает вероятность образования экситонов, связанных на ионизированных донорах, и усиливает высокотемпературный канал рекомбинации А-полосы. Повидимому, это способствует более медленному температурному гашению А-полосы и проявлению ее в спектрах ФЛ исследуемых кристаллов вплоть до комнатной температуры.

На рис. 5 приведены зависимости интенсивности *В*-полосы от интенсивности возбуждения, так называемые люкс-яркостные характеристики (ЛЯХ), которые несут вполне определенную информацию о механизме температурного гашения этой полосы. Если ЛЯХ линей-

Физика и техника полупроводников, 1998, том 32, № 2

ная, т.е. в координатах $\lg I_{PL} = f(\lg I_{ex})$ эта зависимость представляет собой прямую линию с наклоном $\alpha = 1$, то имеет место внутренний механизм гашения, а при $\alpha > 1$ реализуется внешний механизм гашения [7]. Из рис. 5 видно, что в широком интервале температур ЛЯХ близка к линейной и, следовательно, можно полагать, что температурное гашение интенсивности В-полосы осуществляется по внутреннему механизму. По-видимому, этим можно объяснить малые значения энергии активации температурного гашения интенсивности В-полосы как в области низких, так и в области высоких температур. Полученные значения энергии активации термического гашения в этом случае не равны глубине залегания ассоциативных акцепторов $(V_{Zn}D)$ или простых акцепторов V_{Zn}. К примеру, глубина залегания собственного дефекта V_{Zn} ($E_a(V_{Zn}) \sim 0.6$ эВ [8]) на порядок превышает энергию активации температурного гашения интенсивности В-полосы (~ 0.06-0.07 эВ), обусловленной, на наш взгляд, центрами свечения именно такого типа в области высоких температур.

Список литературы

- M. Yamoguchi, A. Yamomoto. Japan. J. Appl. Phys., 16, 77 (1977).
- [2] В.С. Вавилов, Ву Зоан Мьен, Г.Н. Иванова, Д.Д. Недеогло, М.В. Чукичев, А.В. Симашкевич. ФТТ, 26, 1457 (1984).
- [3] Г.Н. Иванова, Д.Д. Недеогло, А.В. Симашкевич, К.Д. Сушкевич. ЖПС, 30, 459 (1979).
- [4] Б.В. Новиков, Г. Роппишер, В.Г. Талалаев. ФТТ, 21, 817 (1979).
- [5] T. Ido, M. Kato, A. Yoshida. J. Phys. D, 11, 15 (1978).
- [6] Г.Н. Иванова, Д.Д. Недеогло, Б.В. Новиков, В.Г. Талалаев. ФТТ, 23, 2693 (1981).
- [7] И.Б. Ермолович, А.М. Павелец, Л.Н. Ханат. ЖПС, 31, 446 (1986).
- [8] J. Jacobs, H. Arnold. Krist. u. Technik., 10, K71 (1975).

Редактор В.В.Чалдышев

The structure of centres and mechanizms of high-temperature blue luminescence of zinc selenide

G.N. Ivanova, V.A. Kasiyan, N.D. Nedeoglo, D.D. Nedeoglo, A.V. Simashkevich

State University of Moldova, 277009 Kishinev, Moldova

Abstract Peculiarities of the temperature quenching of the intensity of edge luminescence bands of n-ZnSe crystals that were annealed in different media (the vacuum, Zn, Se) have been studied in a wide temperature range. Change of the high-temperature exciton luminescence mechanizms in the short-wave region of spectrum (443 nm) with the crystal temperature rise has been observed. It is shown that the character of the temperature quenching of the long-wave edge luminescence band (458 nm) is an evidence in favour of the dissociation of associative luminescence centres as the sample temperature increases.