Отрицательная динамическая дифференциальная проводимость на циклотронной частоте в Ga_{1-x}Al_xAs в условиях баллистического междолинного переноса электронов

© Г.Э. Дзамукашвили, З.С. Качлишвили, Н.К. Метревели

Тбилисский государственный университет, 380028 Тбилиси, Грузия

(Получена 20 мая 1996 г. Принята к печати 22 мая 1997 г.)

Теоретически показано, что в определенных условиях возможно создание мазера на эффекте циклотронного резонанса на основе материалов типа *n*-Ga_{1-x}Al_xAs. Рассматриваются низкие температуры и сильные скрещенные ($\mathbf{E} \perp \mathbf{H}$) поля, в которых электроны в нижней (легкой) долине зоны проводимости баллистическим образом пролетают ее, разогреваясь до энергии начала междолинного рассеяния ε_0 . Исследования проводились для состава твердого раствора 0 < x < 0.39 (соответственно $\varepsilon_0 = (2 \div 17)\hbar\omega^*, \hbar\omega^*$ — энергия междолинного фонона). Величины полей **E** и **H** изменялись в пределах: $E = 5 \div 20$ кВ/см, $H = 6 \div 40$ кЭ. Этим самым плавно меняли пролетные условия в пассивной области ($\varepsilon < \varepsilon_0$), что дает возможность получить желательную зависимость дифференциальной проводимости от частоты $\sigma(\omega)$. В этих условиях, как показали исследования, появляются ранее неизвестные интересные особенности системы горячих электронов.

1. Идея создания полупроводникового мазера на циклотронном резонансе (ЦР) существовала давно [1–3]. В работе [4] была отмечена возможность отрицательной дифференциальной проводимости (ОДП) горячих электронов при ЦР и при их рассеянии на оптических фононах в условиях, которые рассмотрены в работе [5]. Подробно эта возможность обсуждалось в работе [6] на основе расчета, проведенного методом Монте-Карло, и показано, что в чистых материалах *p*-Ge, *n*-GaAs ОДП на ЦР появляется при $\omega > 10^{12}$ Гц и выше.

В указанных работах сильное неупругое рассеяние носителей тока включается лишь при энергии выше некоторой пороговой энергии ε_0 , а при $\varepsilon < \varepsilon_0$ (пассивная область) рассеяние мало и носители движутся почти свободно под действием электромагнитных полей. Энергией ε_0 здесь является энергия оптического фонона $\varepsilon_0 = \hbar\omega_0$. В подобных условиях, как хорошо известно, распределение горячих носителей является сильно анизотропным.

В работе [6] отмечена также возможность реализации ОДП в сильном электрическом поле в n-GaAs при интенсивном обмене электронов между легкой и тяжелыми долинами. Возможности реализации этой идеи посвящены работы [7-9], в которых в качестве энергии ε₀ выступает энергия начала междолинных переходов $(M\Pi) \ \varepsilon_0 = \Delta \varepsilon + \hbar \omega^* \ (\Delta \varepsilon -)$ энергетический зазор между легкой и тяжелыми долинами, $\hbar\omega^*$ — энергия междолинного фонона). Показано, что в условиях баллистического режима разогрева в сильном электрическом поле Е, области динамической ОДП появляются на частотах субмиллиметрового диапазона. Показано также, в частности, что, используя материал *n*-Ga_{1-x}Al_xAs и изменяя его состав, можно плавно менять $\Delta \varepsilon$ и этим самым, в отличие от результатов [4-6], варьировать пролетные условия, что в свою очередь дает возможность плавно менять частоту ОДП с изменением Е. Это можно использовать как метод для изменения частотной зависимости дифференциальной проводимости $\sigma(\omega)$.

В работах [7–9] задача рассматривалась без магнитного поля. Очевидно, определенный научный и прикладной интерес представляет исследование динамики МП в n-Ga_{1-x}Al_xAs в присутствии поперечного магнитного поля ($\mathbf{E} \perp \mathbf{H}$) при плавном изменении области динамического разогрева в пределах от одного до нескольких значений $\hbar\omega^*$. Такое исследование может выявить оптимальный размер области свободного движения электронов (соответственно оптимальный состав тройного соединения) и оптимальное соотношение между полями \mathbf{E} и \mathbf{H} для реализации ОДП на ЦР с лучшими параметрами, чем известно до сих пор в подобных случаях [4–6]. Насколько нам известно, такие исследования раньше не проводились.

В настоящей работе проведено аналитическое исследование динамической ОДП в поперечных электрическом и магнитном (не квантующем) полях $\mathbf{E} \perp \mathbf{H}$ в условиях динамических МП в *n*-Ga_{1-x}Al_xAs в широком диапазоне изменения его состава: 0 < x < 0.39, когда $\Delta \varepsilon$ меняется в пределах $\Delta \varepsilon = (1 \div 16)\hbar\omega^*$. О возможности наблюдения ОДП на ЦР в субмиллиметровом диапазоне в этих условиях было сообщено в работе [10].

2. При расчетах используется двухдолинная модель междолинного переноса [7–9] в предположении, что в нижней долине рассеяние на фононах отсутствует. Как известно, такое предположение справедливо в достаточно сильном электрическом поле при выполнении условия $au_E < au_{op},$ где au_E, au_{op} — времена свободного пролета Г-долины и внутридолинного рассеяния на оптических фононах соответственно. Мы считатем также, что температура решетки мала ($k_0T \ll \hbar\omega^*$). В таком случае электроны, пролетая Г-долину без рассеяния, приобретают энергию ε_0 и после испускания междолинного фонона переходят в Х-долину. В Х-долинах энергия электронов $arepsilon^*$ мала из-за их большой эффективной массы, $arepsilon^* \ll \hbar \omega^*$ (это условие и представляет ограничение максимального значения приложенного электрического поля), поэтому после возвращения в Г-долину они сосредоточиваются

Рис. 1. Схема междолинных переходов (*a*) и их распределения в импульсном пространстве Г-долины в случае $\Delta \varepsilon \gg \hbar \omega^*(b)$ и $\Delta \varepsilon \approx \hbar \omega^*(c)$. Указаны переходы: $I - \Gamma \rightarrow X$, $2 - X \rightarrow \Gamma$. На рис. *a* и *b* штриховыми линиями со стрелками показано свободное движение *A*-электронов и сплошными — *B*-электронов.

вблизи изоэнергетической поверхности $\varepsilon_1 = \Delta \varepsilon - \hbar \omega^*$ (см. рис. 1), откуда начинается новый цикл ускорения. При таких условиях в материалах типа $\text{Ga}_{1-x}\text{Al}_x\text{As}$ в нижней Г-долине появляются два типа электронов (Aи B) с разными временами ускорения (τ_E^A и τ_E^B) в электрическом поле [7–9]

$$\tau_E^A = \frac{P_0 + P_1}{eE_0}, \quad \tau_E^B = \frac{P_0 - P_1}{eE_0}, \tag{1}$$

где

$$P_{0,1} = \sqrt{2m_\Gamma^*(\Delta arepsilon \pm \hbar \omega^*)},$$

 m_{Γ}^{*} — эффективная масса электрона в Г-долине, E_0 — величина постоянного электрического поля. Конфигурация полей изображена на рис. 1. Расчеты проводились в режиме заданного направления поля (замкнутые холловские контакты), когда в качестве греющего

Физика и техника полупроводников, 1998, том 32, № 2

поля выступает приложенное электрическое поле. при воздействии магнитного поля электроны в импульсном пространстве движутся по циклотронным траекториям, центры которых лежат на отрезке $(P_x, P_c, 0)$, $-P_1 < P_x < P_1$ $(P_c = c_0 m_{\Gamma}^* E_0/H, c_0$ — скорость света). Радиусы этих траекторий увеличиваются с удалением от плоскости у0*z*, так как при этом изменяются (уменьшаются) радиусы окружностей, полученных пересечением сферических поверхностей $\varepsilon_1 = \text{const } u \varepsilon_0 = \text{const } c \text{ плоскостью } x = \text{const.}$ Эти радиусы равны $P'_1 = \sqrt{P_1^2 - P_x^2}$ и $P'_0 = \sqrt{P_0^2 - P_x^2}$ соответственно и максимальны при $P_x = 0$, минимальны при $P_x = \pm P_1$. Отсюда следует, что кривизна циклотронных траекторий тем больше, чем меньше P_x . В случае

$$P_c \geqslant (P_0 + P_1)/2 \equiv P_c^* \tag{2}$$

все траектории являются открытыми (пересекают поверхность $\varepsilon_0 = \text{const}$). Неравенство (2) налагает условие на величины электрического и магнитного полей

$$\frac{H}{E_0} \leqslant \frac{2c_0 m_{\Gamma}^*}{P_o + P_1} = \frac{c_0 m_{\Gamma}^*}{P_c^*},$$
(3)

при выполнении которого ни один электрон еще не задержан в магнитной "ловушке".

3. Решено линеаризованное кинетическое уравнение Больцмана для малой добавки к функции распределения (ФР) $f_{\sim} = f_{\sim}^{0} e^{i\omega t}$, возникающей в переменном поле малой амплитуды $\mathbf{E}_{\sim} = \mathbf{E}_{\sim}^{0} e^{i\omega t}$ ($\mathbf{E} = \mathbf{E}_{0} + \mathbf{E}_{\sim}, \mathbf{E}_{\sim}^{0} \ll \mathbf{E}_{0}$). Для удобства решения уравнение написано в координатах { P_x, P_r, φ }, которые связаны с фазовыми координатами { P_x, P_y, P_z } соотношениями: $P_x = P_x$; $P_y = P_c + P_r \cos \varphi$, $P_z = -P_r \sin \varphi$, где $P_r = [P_z^2 + (P_y - P_c)^2]^{1/2}$, $\mathrm{tg} \varphi = P_z/(P_c - P_y)$. В полях с конфигурациями $\mathbf{E}_0 \parallel z$, $\mathbf{H} \parallel x, \mathbf{E}_{\sim} \parallel \mathbf{E}_0$ имеются уравнения для функций f_{\sim}^A и f_{\sim}^B , соответствующих разным группам электронов (A и B):

$$i\omega f^{A}_{\sim} + \omega_{c} \frac{\partial f^{A}_{\sim}}{\partial \varphi} = -eE^{0}_{\sim} \frac{\partial f^{A}_{0}}{\partial P_{z}} \theta(\varphi - \varphi_{1}), \quad \varepsilon < \varepsilon_{0}; \quad (4)$$

$$i\omega f_{\sim}^{B} + \omega_{c} \frac{\partial f_{\sim}^{B}}{\partial \varphi} = -eE_{\sim}^{0} \frac{\partial f_{0}^{B}}{\partial P_{z}} \theta(\varphi - \varphi_{2}), \quad \varepsilon < \varepsilon_{0},$$
$$\theta(\zeta) = \begin{cases} 1, \quad \zeta \ge 0;\\ 0, \quad \zeta < 0; \end{cases}$$
(5)

$$\varphi_1 = \arccos\left(\frac{P_1^2 - P_x^2 - P_r^2 - P_c^2}{2P_c P_r}\right), \ \varphi_2 = 2\pi - \varphi_1, \ (6)$$

где $\omega_c = eH/m_{\Gamma}^*c_0$ — циклотронная частота, f_0^A , f_0^B — функции распределения в Γ -долине в постоянных полях $\mathbf{E}_0 \perp \mathbf{H}$. Они удовлетворяют кинетическому уравнению в постоянных полях и условию сохранения полного числа электронов в обеих долинах:

$$\omega_{c} \frac{\partial f_{0}^{A}}{\partial \varphi} = \frac{N_{X} \nu_{1}}{2\pi P_{1}} \,\delta(P^{2} - P_{1}^{2}) \,\theta(\varphi - \varphi_{1}), \quad \varepsilon < \varepsilon_{0}; \quad (7)$$

$$\omega_{c} \frac{\partial f_{0}^{B}}{\partial \varphi} = \frac{N_{X} \nu_{1}}{2\pi P_{1}} \,\delta(P^{2} - P_{1}^{2}) \,\theta(\varphi - \varphi_{2}), \quad \varepsilon < \varepsilon_{0}; \quad (8)$$

$$\int (f_0^A + f_0^B) d^3 P + N_X = N_0 = \text{const},$$
(9)

где N_X — концентрация электронов в X-долинах, $u_1 = D_{\Gamma X}^2 (m_\Gamma^*)^{3/2} \sqrt{\varepsilon_1} / \sqrt{2} \pi \hbar^3 \rho \omega^*$ — характерная частота перехода $X \to \Gamma$, $D_{\Gamma X}$ — константа взаимосвязи $\Gamma-X$ -долин, ρ — плотность образца. Среди кинетических коэффициентов характерная частота перехода $\Gamma \to X$ (ν_0) является самым большим параметром. Она намного превосходит величину ν_1 : $u_0/
u_1 = (m_X^*/m_\Gamma^*)^{3/2} (\varepsilon_0/\varepsilon_1)^{1/2} \gg 1.$ Поэтому количество электронов в области энергии $\varepsilon > \varepsilon_0$ мало, и их вкладом в проводимость можно пренебречь [9]. Основные процессы, определяющие проводимость, протекают в области $\varepsilon < \varepsilon_0$. Поэтому в уравнениях отсутствуют члены, появляющиеся при $\varepsilon > \varepsilon_0$. В правой части уравнений (7), (8) б-функция Дирака появляется из-за малой ширины источника в Г-долине. Множитель перед δ -функцией связан с условием нормировки (9).

Мы не приводим процесс решения системы дифференциальных уравнений (4)–(9), но отметим, что составляющая тензора дифференциальной проводимости σ_{zz} представлена в виде отдельных частей, соответствующих разным группам электронов:

$$\sigma_{zz} = \sigma^{A} + \sigma^{B} = \frac{1}{E_{\infty}^{0}} \frac{e}{m_{\Gamma}^{*}}$$

$$\times \iiint (-P_{r} \sin \varphi) (f_{\infty}^{A} + f_{\infty}^{B}) P_{r} dP_{r} dP_{x} d\varphi, \quad (10)$$

$$\sigma^{A} = \sigma_{0} \frac{a}{4\pi \alpha} \frac{1}{1 - \Omega_{c}^{2}} \iiint \frac{\sin \varphi}{|\sin \varphi_{1}|}$$

$$\times \left[(1 + \Omega_{c}^{2}) \cos \varphi_{1} \cos \Omega_{c} (\varphi - \varphi_{1}) - 2 \cos \varphi \right] dx dr d\varphi, \quad (11)$$

$$\sigma^{B} = \sigma_{0} \frac{a}{4\pi \alpha} \frac{1}{1 - \Omega_{c}^{2}} \iiint \frac{\sin \varphi}{|\sin \varphi_{2}|}$$

$$\times \left[(1 + \Omega_{c}^{2}) \cos \varphi_{2} \cos \Omega_{c} (\varphi - \varphi_{2}) - 2 \cos \varphi \right] dx dr d\varphi, \quad (12)$$

$$\sigma_{0} = \frac{e^{2} N_{X} \nu_{1}}{m_{\Gamma}^{*} \nu_{E}^{2}},$$

где $a = P_c/P_0$, $\alpha = \sqrt{\varepsilon_1/\varepsilon_0}$, $\Omega_c = \omega/\omega_c$, $\nu_E = \tau_E^{-1}$ = eE_0/P_0 — пролетная частота в Г-долине, $x = P_x/P_0$, $r = P_r/P_0$, $\Sigma_{A,B}$ — области движения *A*- и *B*-электронов в импульсном пространстве. Интегралы (10) и (11) вычислялись численными методами Монте-Карло.

 На рис. 2–5 приведены результаты исследования частотной зависимости дифференциальной проводимости. Они легко объясняются с учетом изменения динамики разогрева электронов, вызванного изменением $\Delta \varepsilon$, \mathbf{E}_0 и **H**. Последние однозначно определяют зависимость между τ_E^A , τ_E^B , ν_E и ω_c . К совокупности этих параметров добавляется еще ω — частота внешнего переменного электрического поля, приложенного в качестве малого возмущения сильно неравновесной системы электронов. Путем изменения $\Delta \varepsilon$ учтены изменения всех деталей зонной структуры: эффективных масс электронов в разных долинах, констант связей между долинами, энергии междолинных фононов, плотности образца и т.п., которые однозначно определяются составом раствора [11].

4.1. Малые $\Delta \varepsilon$. В случае $\Delta \varepsilon = (1 \div 3)\hbar \omega^*$ (соответствует составу твердого раствора 0.34 < x < 0.39) радиус поверхности $\varepsilon_1 = \text{const}$ мал (велико различие между P_1 и P_0), и электроны разных групп имеют близкие по величине времена разогрева электрическим полем $(\tau_F^A \approx \tau_F^B)$. При этом из-за малости P_1 нет заметного расхождения между временами пролета внутри одной группы электронов. В этом случае, называемом междолинным стримингом [8], в процессе разогрева электронов их траектории создают узкий пучок в импульсном пространстве, который сохраняется вдоль циклотронных траекторий (рис. 1, c). В этих условиях магнитные поля, удовлетворяющие условию (3), вполне достаточны для появления резонанса в зависимости $\sigma(\omega)$. Резонанс появляется вблизи циклотронной частоты $\omega \approx \omega_c$. Если рассмотреть область полей, в которой все траектории открыты, оказывается, что наиболее выраженный резонанс устанавливается при $\omega_c = \omega_c^*$ (рис. 2, *a*), где

$$\omega_c^* = eH^*/m_{\Gamma}^*c_0 = eE_0/P_c^* = 2eE_0/(P_0 + P_1).$$
(13)

Из условий (3) и (13) находим оптимальное соотношение между величинами электрического и магнитного полей (между E_0^* и H^*), при котором ширина резонансной линии максимальна

$$H^*/E_0^* = 2c_0 m_{\Gamma}^*/(P_0 + P_1).$$
 (14)

При малых $\Delta \varepsilon$ существование в системе явно выраженного пролетного времени обусловливает то, что уменьшение отношения H/E_0 в определенных пределах (когда P_c становится больше, чем P_c^*) не вызывает подавления резонанса (рис. 2, b). При $\Delta \varepsilon = \hbar \omega^*$ область изменения P_c , в которой наблюдается резонанс, довольно широкая $0.55P_0 < P_c < 0.7P_0$. При $E_0 = 10 \text{ кВ/см}$ она соответствует области магнитных полей 29 кЭ < H < 37.5 кЭ. Ширина этой области изменяется пропорционально изменению E_0 . Здесь же отметим, что расположением точки P_c в импульсном пространстве однозначно определяется соотношение характерного времени пролета в Г-долине и циклотронной частоты $\nu_E/\omega_c = P_c/P_0$.

4.2 Средние и большие $\Delta \varepsilon$. В случае $\Delta \varepsilon = (3 \div 8)\hbar \omega^* (0.2 < x < 0.34)$ значения P_1 и P_0 сближаются и появляется различие как между временами пролета внутри одной группы электронов, так

Рис. 2. Зависимость дифференциальной проводимости в Γ-долине σ от частоты внешнего переменного электрического поля ω при $\Delta \varepsilon = 1.02\hbar\omega^*$ (Ga_{0.61}Al_{0.39}As), $\sigma_0 = e^2 N_X \nu_1 / m_1^* \nu_E^2$. Параметры расчета: $E_0 = E_0^* = 10$ кВ/см; $a - H = H^* = 37.5$ кЭ ($P_c = 0.55P_0$), $\omega_c = 6.67 \cdot 10^{12}$ с⁻¹; b - H = 29.5 кЭ ($P_c = 0.7P_0$), $\omega_c = 5.24 \cdot 10^{12}$ с⁻¹. Линии с черными точками — расчет проводимости *A*-электронов, линии с белыми точками — *B*-электронов, сплошными — суммарная проводимость.

и между τ_E^A и τ_E^B . В системе отсутствует выделенное время разогрева, и поэтому на частоте $\omega_c = \omega_c^*$ резонансный пик узкий по сравнению со случаем $\Delta \varepsilon \approx \hbar \omega^*$ (рис. 3,4). Смещение P_c в сторону его увеличения подавляет резонанс, и такое подавление происходит тем эффективнее, чем больше $\Delta \varepsilon$.

В случае зонной структуры GaAs ($\Delta \varepsilon = 16\hbar\omega^*$), когда существует предельно малое различие между P_1 и P_0 ($P_1/P_0 = 0.94$), τ_E^A и τ_E^B сильно различаются друг от друга ($\tau_E^A/\tau_E^B \approx 32$), а различие между временами разогрева разных электронов внутри группы A составляет больше 20%. Зато в группе B электроны приобретают почти одинаковые времена пролета (рис. 1, b). Последнее обстоятельство обусловливает появление резонанса в дифференциальной проводимости B-электронов лишь при $P_c = P_c^*$, однако этот резонанс уже не может обеспечить суммарную динамическую ОДП, ибо на

частоте $\omega = \omega_c A$ -электроны имеют положительную дифференциальную проводимость (ДП), которая по модулю превосходит ОДП *B*-электронов (рис. 5, *a*). Малое увеличение P_c вызывает исчезновение резонансного пика в зависимости $\sigma^B(\omega)$. По нашему мнению, этим и объясняется то обстоятельство, что попытки получения ОДП на циклотронном резонансе в GaAs до сих пор были неуспешными. По-видимому, для таких $\Delta \varepsilon$ следует увеличить магнитное поле до появления в системе замкнутых траекторий.

Таким образом, при $\Delta \varepsilon \gg \hbar \omega^*$ и при выполнении условия (3) резонанс не появляется. Зато при таких значениях $\Delta \varepsilon$, как в GaAs, имеется другой механизм возникновения динамической ОДП, основанный на сильном различии между временами τ_E^A и τ_E^B ; в высокочастотной области ОДП проводимость быстрых *В*-электронов по модулю превосходит положительную

Puc. 3. Зависимость дифференциальной проводимости в Γ-долине σ от частоты внешнего переменного электрического поля ω при $\Delta \varepsilon = 4.5 \hbar \omega^*$ (Ga_{0.7}Al_{0.3}As). Параметры расчета: $E_0 = E_0^* = 20$ кВ/см, $H = H^* = 27$ кЭ ($P_c = 0.9P_0$), $\omega_c = 6.23 \cdot 10^{12}$ с⁻¹. Обозначения на кривых те же, что и на рис. 2.

Puc. 4. Зависимость дифференциальной проводимости в Γ-долине σ от частоты внешнего переменного электрического поля ω при $\Delta \varepsilon = 10\hbar\omega^*$ (Ga_{0.84}Al_{0.16}As). Параметры расчета: $E_0 = E_0^* = 20$ кB/см, $H = H^* = 18$ кЭ, $\omega_c = 3.88 \cdot 10^{12} \text{ c}^{-1}$. Обозначения на кривых те же, что и на рис. 2.

ДП медленных A-электронов, в результате чего в области частот $1/\tau_E^A \ll \omega_c < 1/\tau_E^B$ имеем динамическую ОДП в сильном электрическом поле [7,8].

5. Для экспериментального обнаружения динамической ОДП немаловажную роль играет величина статической ОДП, обусловливающая появление низкочастотных колебаний. В случае ОДП на ЦР [4,6] статическая ОДП отсутствует, что исключает необходимость принятия специальных мер для предотвращения низкочастотных колебаний, мешающих обнаружению сверхвысокочастотной ОДП. В случае пролетных МП в *n*-GaAs, *n*-Ga_{1-x}Al_xAs [6,7–9] статическая ОДП является доминирующей над динамической ОДП. Появление статической ОДП обусловливается сильной инверсией электронов $(\partial f/\partial \varepsilon > 0)$ в электрическом поле[8,12].

В работе [13] показано, что инверсия по энергии уменьшается включением поперечного магнитного поля. Такое уменьшение тем эффективнее, чем меньше $\Delta \varepsilon$. Расчеты вольт-амперных характеристик в *n*-Ga_{1-x}Al_xAs в полях $\mathbf{E}_0 \perp \mathbf{H}$ показывают [14], что величина статической ОДП тоже уменьшается по модулю с увеличением магнитного поля и уменьшением $\Delta \varepsilon$. При $\Delta \varepsilon \approx \hbar \omega^*$ исчезновение статической ОДП легко достигается. Эти результаты хорошо согласуются с результатами расчетов зависимостей $\sigma = \sigma(\omega)$, показанных на рис. 2–5. Дифференциальная проводимость вблизи нулевой частоты $\sigma(\omega \approx 0)$ по модулю тем меньше, чем больше магнитное поле (при одинаковых $\Delta \varepsilon$). При $\Delta \varepsilon \approx \hbar \omega^*$ в полях, в которых существует динамическая ОДП, $\sigma(\omega = 0) \gtrsim 0$. Этот результ

Puc. 5. Зависимость дифференциальной проводимости в Γ-долине σ от частоты внешнего переменного электрического поля ω при $\Delta \varepsilon = 16\hbar\omega^*$ (GaAs). Параметры расчета: $E_0 = E_0^* = 20$ кВ/см; $a - H = H^* = 13$ кЭ ($P_c = 0.97P_0$), $\omega_c = 3.36 \cdot 10^{12} \text{ c}^{-1}$; b - H = 0, расчет из работы [8]. Обозначения на кривых те же, что и на рис. 2.

тат является важным потому, что именно при таких $\Delta \varepsilon$ ширина резонансной полосы является максимальной (см. рис. 2, *a*). Как показано выше, ширина линии ЦР уменьшается с уменьшением *H*. По этой причине ЦР при малых $\Delta \varepsilon$ проявляет наименьшую чувствительность к внешним факторам и несовершенствам модели.

Несовершенство модели в основном состоит в том, что мы не рассматриваем область $\varepsilon > \varepsilon_0$. Проникновение электронов в эту область увеличивает время разогрева и вносит положительный вклад в ДП [9]. С другой стороны, такое проникновение размывает четкую картину, изображенную на рис. 1, *с*. В плане обсуждения этой проблемы и для определения ширины области $\varepsilon > \varepsilon_0$ важную роль играет частота перехода $\Gamma - X$ (ν_0). Константа взаимосвязи между долинами $D_{\Gamma X}$, входящая в ν_0 ($\nu_0 \sim D_{\Gamma X}^2$), к сожалению, точно не известна и служит в расчетах подгоночным параметром [11]. Мы надеемся, что ее значение достаточно велико и имеет порядок 10^9 эВ/см [15]. В таком случае допущение о том, что область $\varepsilon > \varepsilon_0$ узкая (с вытекающими результатами), справедливо, и количественные результаты, приведенные здесь, достоверны. В противном случае также появляется ОДП на ЦР, но результаты будут носить качественный характер.

Допущение о динамическом разогреве является одним из главных в нашем рассмотрении. Как было отмечено выше, электрические поля, в которых появляется динамическая ОДП, вполне достаточны для такого разогрева, особенно для малых $\Delta \varepsilon$, когда время ускорения электронов до энергии ε_0 слишком мало — при $\Delta \varepsilon \approx \hbar \omega^*$ ($\varepsilon_0 \approx 2\hbar \omega^*$) и при $E_0 = 10$ кВ/см, $\tau_E \simeq 3 \cdot 10^{-13}$ с. В случае $\Delta \varepsilon \gg \hbar \omega^*$ τ_E увеличивается, и допущение

В случае $\Delta \varepsilon \gg \hbar \omega^* \tau_E$ увеличивается, и допущение $k_0T \ll \hbar \omega^*$ является необходимым условием для динамического МП. В крайнем случае при $\Delta \varepsilon > 10\hbar \omega^*$ (когда ширина линии ЦР мала) механизм динамической ОДП меняется и носит, по-видимому, пролетный характер [8]. Динамическая ОДП, исследованная в работах [7,8], появляется за счет быстрых *В*-электронов. Они динамическим образом пролетают Г-долину, даже если рассмотреть внутридолинное рассеяние. Рассеяние же *А*-электронов, дающее положительный вклад в общую проводимость, по-видимому, будет уменьшать их проводимость. Рассмотрение конечной величины τ_{op} важно лишь в том случае, когда в полях $\mathbf{E}_{\perp} \perp \mathbf{H}$ появляются замкнутые циклотронные траектории. "Уход" электронов с этих траекторий возможен лишь за счет конечной величины τ_{op} . Но, как показано, ОДП на ЦР появляется даже при отсутствии замкнутых траекторий. По этой причине термин ЦР здесь надо понимать не в "классическом" смысле.

В случае больших $\Delta \varepsilon$, когда ОДП на ЦР является проблематичной, видимо, нужно увеличивать магнитное поле до появления замкнутых траекторий помимо открытых траекторий типа *A* и *B*. Условия пролета электронов и их перераспределение между этими траекториями однозначно будут определяться совокупностью параметров $\Delta \varepsilon$, **H**, **E**₀ и τ_{op} . По вышеуказанным причинам наиболее важную роль играет $\Delta \varepsilon$ (так как с ней связаны все остальные параметры зонной структуры [11]). С одной стороны, одновременное рассмотрение совокупности этих параметров сложно. С другой стороны, очевидно, что будут появляться новые интересные возможности "управления" пролетными процессами, и тем самым можно получить благоприятные условия для ОДП на ЦР.

Список литературы

- [1] B. Lax, J.G. Mavraides. Sol. St. Phys., 11, 261 (1960).
- [2] P. Wolff. Physics 1, 147 (1964).
- [3] А.С. Тагер. Письма ЖЭТФ, 3, 369 (1966).
- [4] А.А. Андронов, В.А. Козлов. Письма ЖЭТФ, 17, 124 (1973).
- [5] И.И. Восилюс, И.Б. Левинсон. ЖЭТФ, 50, 1660 (1966);
 ЖЭТФ, 52, 1013 (1967).
- [6] Я.И. Альбер, А.А. Андронов, В.А. Валов и др., ЖЭТФ, 72, 1030 (1977).
- [7] A.A. Andronov, G.E. Dzamukashvili. Sol. St. Commun., 55, 915 (1985).
- [8] А.А. Андронов, Г.Э. Дзамукашвили. ФТП, 19, 1810 (1985).
- [9] А.А. Андронов, Г.Э. Дзамукашвили, З.С. Качлишвили, И.М. Нефедов. ФТП, 21, 1813 (1987).
- [10] Г.Э. Дзамукашвили, З.С. Качлишвили, Н.К. Метревели. Письма ЖЭТФ, 62, 220 (1995).
- [11] S. Adachi. J. Appl. Phys., 58, R1 (1985).
- [12] Г.Э. Дзамукашвили. ФТТ, 32, 676 (1990).
- [13] Т.А. Головко, Г.Э. Дзамукашвили. Сообщ. АН Грузии, 149, 219 (1994).
- [14] Г.Э. Дзамукашвили, З.С. Качлишвили, Н.К. Метревели. Сообщ. АН Грузии (1996).
- [15] A.K. Saxena, K.S. Gurumurthy. J. Phys. Chem. Sol., 43, 801 (1982).

Редактор Т.А. Полянская

Negative dynamic differential conductivity at the cyclotron frequency in $Ga_{1-x}AI_xAs$ under ballistical intervalley transition of electrons

G.E. Dzamukashvili, Z.S. Kachlishvili, N.K. Metreveli

Tbilisi State University, 380028 Tbilisi, Georgia

Abstract It is shown theoretically that under certain conditions a cyclotron resonance mazer based on *n*-Ga_{1-x}Al_xAs type materials can be fabricated. Low temperatures and strong crossed fields ($\mathbf{E} \perp \mathbf{H}$) in which electrons in the lower (light) conduction band valley transit dynamically (ballystically) up to the energy of the onset of intervalley scattering ε_0 , are considerid. The investigations have been carried out for the solid solution composition 0 < x < 0.39 ($\varepsilon = (2 \div 17)\hbar\omega^*$, $\hbar\omega^*$ is the intervalley phonon energy). The values of **E** and **H** fields varied within $E = (5 \div 20) \text{ kV/cm}$. $H = (6 \div 40) \text{ kOe}$. This caused smooth changing of transit conditions in the passive region, which allows one to obtain the desirable frequency dependence of the differential conductivity $\sigma(\omega)$. The investigations showed that under these conditions earlier unknown interesting peculiarities of the hot electron system appear.