К расчету высоты барьера Шоттки на начальной стадии формирования контакта (карбид кремния)–(субмонослойная пленка металла)

© С.Ю. Давыдов, А.А. Лебедев, С.К. Тихонов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 5 июня 1997 г. Принята к печати 24 июня 1997 г.)

В рамках обобщенной модели Андерсона–Халдейна для плотности состояний полупроводника рассчитано положение локальных и квазилокальных состояний металлических атомов (щелочные металлы, металлы III группы и группы меди), адсорбированный на поверхности 6*H*-SiC и их заполнение. Результаты расчетов сопоставляются с экспериментальными данными по барьерам Шоттки.

Наличие у SiC широкой запрещенной зоны Δ , величина которой для различных политипов может варьироваться от 2.4 эВ (тип 3C) до 3.33 эВ (тип 2H) [1], делает это материал весьма привлекательным для создания высокотемпературных, высокочастотных и высокомощных приборов микроэлектроники [2]. Неудивительно поэтому, что в последние годы интерес к изучению контакта между SiC и металлическими пленками возрастает как у экспериментаторов [3—-8], так и у теоретиков [7,9–11].

Недавно в работе [12] для исследования формирования барьера Шоттки на контакте металл-полупроводник был предложен подход, основанный на обобщении модели плотности состояний полупроводника ρ , предложенной Халстейном и Андерсоном [13]. В исходном варианте [13] эта модель чрезвычайно проста:

$$\rho(\omega) = \begin{cases} \rho & \text{при} \quad |\omega| > \Delta/2, \\ 0 & \text{при} \quad |\omega| \leqslant \Delta/2, \end{cases}$$
(1)

где $\rho = \text{const}, \omega$ — энергия. Здесь и в дальнейшем предполагается, что нуль энергии совпадает с серединой запрещенной зоны. Такую модель плотности состояний мы будем называть "бездефектной" моделью (БДМ). Если внутри щели присутствуют примесные состояния или состояния на дефектах, то выражение для $\rho(\omega)$ должно быть соответствующим образом изменено. Так, например, в работе [12] предполагалось, что в центре щели существует зона состояний дефектов шириной $\delta < \Delta$ с плотностью состояний $\gamma.$ Такую модель мы будем называть "дефектной" моделью (ДМ). В [12] были исследованы общие свойства БДМ и ДМ (положение локальных и квазилокальных уровней, расположенных в области щели, и их заполнение в зависимости от параметров модели), и в рамках БДМ был проведен расчет локальных состояний атомов щелочных металлов, металлов группы Си и III группы на поверхности GaAs. Сопоставление результатов расчета с данными эксперимента показывает вполне удовлетворительное согласие. В настоящей работе мы рассмотрим адсорбцию тех же атомов на SiC.

Все необходимые для расчета выражения приведены в работе [12], и здесь мы повторять их не будем. Обсудим лишь выбор параметров модели. Будем рассматривать адсорбцию на политипе 6*H*-SiC. Примем ширину запрещенной зоны $\Delta = 3.06$ эВ и сродство к электрону $\chi = 4.4$ эВ [8]. Для ДМ принимаем $\delta/\Delta = 0.2$, $\gamma = \rho$. Положение уровня адсорбированного атома (адатома) E_a относительно центра щели есть

$$E_a = -I + (\chi + \Delta/2), \qquad (2)$$

где I — потенциал ионизации атома, значения которого мы будем брать из работы [14]. Полуширину квазиуровня адатома $\Gamma = \pi \rho V^2$, где V — матричный элемент, описывающий взаимодействие атома металла с полупроводником (см. подробности в работе [12]), можно оценить следующим выражением:

$$\Gamma = \frac{\pi}{2} t_a,\tag{3}$$

где *t_a* — матричный элемент взаимодействия ближайших соседей для атомов в объеме, который, как и в [12], мы

Να

2

Рис. 1. Зависимость положения локальных уровней адатомов ω^* относительно потолка валентной зоны 6*H*-SiC от потенциала ионизации *I* (E_v — потолок валентной зоны, E_c — дно зоны проводимости), рассчитанная в рамках бездефектной модели.

Исходные параметры и результаты	расчетов положения	локальных	состояний и их	заполнения д.	ля собственного	полупроводника
6 <i>H</i> -SiC ($E_F = 0$) в отн. ед. ($\Delta = 1$,	$\delta = 0.2$)					

		Na	K	Rb	Cs	Ag	Au	Cu	Al	Ga	In
E_a :		0.24	0.52	0.57	0.67	-0.54	-1.08	-0.59	-0.02	-0.02	0.05
Г:		0.39	0.29	0.22	0.19	0.62	0.69	0.79	1.06	1.46	0.82
	ω^*	0.16	0.36	0.41	0.47	-0.29	-0.46	-0.28	-0.01	-0.01	0.02
БДМ	n_b	0.08	0.04	0.03	0.02	0.15	0.23	0.17	0.14	0.17	0.12
	n _a	0.08	0.04	0.03	0.02	0.62	0.39	0.58	0.57	0.52	0.61
	$-\omega_1^*$	0.11	0.10	0.10	0.10	0.34	0.47	0.34	0.18	0.19	0.16
	ω_i^*	-0.09	-0.10	-0.10	-0.10	0.10	0.10	0.10	0	0	-0.01
ДМ	ω_2^*	0.23	0.23	0.43	0.48	0.10	0.10	0.10	0.18	0.18	0.18
	n_b	0.06	0.04	0.03	0.03	0.15	0.25	0.18	0.16	0.19	0.13
	n_i	0.07	0.03	0.02	0.01	0.03	0.01	0.02	0.03	0.02	0.04
	n_a	0.21	0.07	0.05	0.04	0.53	0.38	0.50	0.37	0.36	0.34

Примечание. БДМ — бездефектная модель, ДМ — дефектная модель; E_a и n_a — энергетическое положение и степень заполнения уровня адсорбированного атома (2); ω^* , ω_1^* , ω_2^* — энергии локальных уровней, ω_i^* — квазилокального уровня; $n_a = n_b + n_1 - B$ БДМ, $n_a = n_b + n_1 + n_i - B$ ДМ, где n_b и n_i — вклады валентной зоны и зоны дефектов, n_1 — вклад локальных состояний с энергией ω^* — в БДМ и с энергией ω_1^* — в ДМ.

будем приравнивать соответствующему универсальному матричному элементу Харрисона [15,16]. Исходные параметры и результаты расчета представлены в таблице в относительных единицах ($\Delta = 1$).

Обсудим сначала результаты расчета в БДМ. Ha рис. 1 представлены результаты расчета положения локальных уровней адатома в запрещенной зоне (для удобства величина ω^* приведена в эВ в отсчете от потолка валентной зоны 6H-SiC). Из рисунка следует, что зависимость ω^* от потенциала ионизации адатома I линейна за исключением Au, что связано с очень большим значением I = 9.23 эВ для Au, резко отличающимся от потенциала ионизации предшествующего элемента: I_{Ag} = 7.58 эВ. На рис. 2 представлены экспериментальные значения высоты барьеров Шоттки Φ_{Bp} по данным [3–7], из которого видно, что с ростом I величина Φ_{Bp} уменьшается. К сожалению, непосредственно сопоставить с расчетом можно лишь результаты для Cs, Ag, Au и Al. Для этих адатомов зависимость $\Phi_{Bp}(I)$ также близка к линейной (если провести прямую от Cs к Au, то точка, соответствующая Al, расположится как раз между значениями Φ_{Bp} для отожженной и неотожженной систем), но она более полога, нежели расчетная зависимость $\omega^*(I)$. (Физические основания сопоставления глубины залегания локальных уровней адатома в запрещенной зоне и высоты образующегося при малых покрытиях барьера Шоттки обсуждаются в работах [12,17-20]).

В таблице также представлены числа заполнения уровней адатомов n_a и, отдельно, вклад в n_a от валентной зоны n_b (см. подробности в [12]). Величина $n_a = n_0 + n_1$, где n_1 — вклад заполненного локального состояния, который для случая собственного полупроводника (энергия Ферми $E_F = 0$) отличен от нуля для атомов группы Cu, Al и Ga ($\omega^* < 0$). В остальных случаях локальные состояния располагаются выше середины щели и не дают вклада в n_a . Отметим, что мы фиксируем положение уровня Ферми в середине щели лишь при расчете чисел заполнения. При сопоставлении же результатов расчета ω^* с данными эксперимента по Φ_{Bp} предполагается, как и в [12,17–20], что при определенных (очень малых) покрытиях уровень Ферми стабилизируется в области энергий, соответствующих энергии локального состояния (пиннинг).

Перейдем теперь к результатам для ДМ, приняв отношение ширины зоны дефектов и запрещенной зоны $\delta/\Delta = 0.2$. Результаты расчетов положения локальных уровней $\omega_{1,2}^*$ представлены на рис. 3, 4. Здесь имеется 2 ветви локальных состояния, лежащих выше и ниже зоны дефектов. В случае ДМ, как и в предыдущем случае БДМ, наблюдается падающая зависимость $\omega_{1,2}^*(I)$. Для ДМ характерно "прилипание" уровней определенной группы адатомов (щелочных металлов для нижней ветви локальных состояний и металлов группы Си для верхней ветви) к краю зоны дефектов. Отметим, однако, что

Рис. 2. Зависимость высоты барьера Шоттки Φ_{Bp} для p-6H-SiC от потенциала ионизации адатома I (по данным работ [3–7] для адсорбции на Si; результаты для Al и Ti, помеченные ромбами, соответствуют отожженной системе).

Рис. 3. Зависимость положения локальных уровней адатомов ω_1^* относительно потолка валентной зоны от потенциала ионизации *I*, рассчитанная в дефектной модели; E_{ib} — энергия дна зоны дефектов.

Рис. 4. То же, что и на рис. 3, но для уровня энергии ω_2^* ; E_{it} — энергия потолка зоны дефектов.

такие "прилипающие" уровни могут быть артефактом теории, возникающим вследствие ступенчато-образной аппроксимации плотности состояний спектра полупроводника (см. [12]).

Как в дефектном, так и в бездефектном случаях заселенность адатомов щелочных металлов мала, тогда как для металлов III группы и группы Си числа заполнения $n_a \cong 0.5$. Во всех рассмотренных случаях, следовательно, адатомы выступают в качестве доноров. Расчет чисел заполнения адатомов представляет интерес для исследования концентрационных зависимостей высоты барьеров Шоттки, которое мы намерены осуществить в дальнейшем.

В заключение отметим, что совершенно различные подходы к расчету высоты барьера Шоттки, использованные нами в работах [9,10] и настоящей публикации, приводят к качественно одинаковым результатам.

Работа выполнена при частичной поддержке Аризонского университета.

Список литературы

- [1] В.И. Гавриленко, А.М. Грехов, Д.В. Корбутяк, В.Г. Литовченко. Оптические свойства полупроводников. Справочник (Киев, Наук. думка, 1987).
- [2] Proc. 5 Conf. "Silicon Carbide and Related Materials", ed. by M.G. Spencer et. al. [Inst. Phys. Conf. Ser., N 137 (Bristol– Philadelphia, 1993)].
- [3] J.R. Waldrop, R.N. Grant. Appl. Phys. Lett., 56, 557 (1990).
- [4] J.R. Waldrop, R.N. Grant, Y.C. Wang, R.F. Davis. J. Appl. Phys., 72, 4757 (1992).
- [5] J.R. Waldrop, R.N. Grant. Appl. Phys. Lett., 62, 2685 (1993).
- [6] J.R. Waldrop. J. Appl. Phys., 75, 4558 (1975).
- [7] V. van Elsbergen, T.U. Kampen, W. Mönch. J. Appl. Phys., 79, 316 (1995).
- [8] А.Н. Андреев, А.А.Лебедев, М.Г. Растегаева, Ф.М. Снегов, А.Л. Сыркин, В.Е. Челноков, Л.Н. Шестопалов. ФТП, 29, 1828 (1995).
- [9] С.Ю. Давыдов, С.К. Тихонов. ФТТ, 37, 2221 (1995).
- [10] С.Ю. Давыдов, А.А. Лебедев, С.К. Тихонов. ФТП, 30, 597 (1996).
- [11] W. Mönch. In: *Control of Semiconductor Interfaces*, ed. I. Ohdomari et. al. (Elsevier, Amsterdam, 1994) p. 169.
- [12] С.Ю. Давыдов. ФТП, **31**, 1236 (1997).
- [13] F.D.M. Halstane, P.W. Anderson. Phys. Rev. B, 13, 2553 (1976).
- [14] Физические величины. Справочник, под ред. И.С. Григорьева и Е.З. Мейлизова (М., Энергоатомиздат, 1991).
- [15] У. Харрисон. Электронная структура и свойства твердых тел (М., Мир, 1983) т. 1.
- [16] W.A. Harrison. Phys. Rev. B, 27, 3592 (1983).
- [17] W. Mönch. Europhys. Lett., 7, 275 (1988).
- [18] W. Mönch. Rep. Prog. Phys., 53, 221 (1990).
- [19] J.E. Klepeis, W.A. Harrison. J. Vac. Sci. Technol. B, 6, 1315 (1988).
- [20] J.E. Klepeis, W.A. Harrison. Phys. Rev. B, 40, 5810 (1989).

Редактор Т.А. Полянская

Физика и техника полупроводников, 1998, том 32, № 1

On the calculation of Schottky barrier height on the early state of $\langle silicon carbide \rangle - \langle metal submonolayer \rangle$ contact formation

S.Yu. Davydov, A.A. Lebedev and S.K. Tikhonov

A.F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Within the scope of an extended Anderson–Haldein model of semiconductor density of states position of local and quasi-local states of metallic atoms (alkaline metals, metals of III group, Cu group) adsorbed on the surface of 6H-SiC have been calculated. Theoretical results are compared with the experimental data on Schottky barriers.