Влияние спин-орбитального взаимодействия на оптические спектры акцептора в полупроводниковой квантовой точке

© А.Ф. Полупанов, В.И. Галиев, М.Г. Новак

Институт радиотехники и электроники Российской академии наук, 103907 Москва, Россия

(Получена 15 августа 1996 г. Принята к печати 20 марта 1997 г.)

Вычислены зависимости энергий уровней и сил осцилляторов дипольных оптических переходов из основного в нечетные возбужденные состояния мелкого акцептора, расположенного в центре сферической квантовой точки, от энергии спин-орбитального расщепления валентных зон Δ при различных значениях радиуса точки и величины отношения эффективных масс тяжелой и легкой дырки β . Установлено, что спин-орбитальное взаимодействие сильно влияет на некоторые состояния акцепторов в случае реальных больших величин β и при достаточно малых значениях радиуса точки. Наибольшее влияние спин-орбитальное взаимодействие состояние симметрии Γ_6^- , поскольку его характер изменяется от тяжелодырочного ($\Delta = 0$) до легкодырочного ($\Delta = \infty$). В рамках использованных приближений задача решена точно, в частности получены точные аналитические выражения для волновых функций акцептора.

1. Состояния мелких примесей в полупроводниковых структурах с квантовыми ямами и их оптические свойства интенсивно исследуются в последние годы (см., например, обзор [1]). Это связано, в частности, с повышенным интересом к новым структурам, таким, например, как квантовые проволоки и квантовые точки и, соответственно, с необходимостью исследования примесных состояний в них, с попытками получить более точные результаты расчетов, используя более точные приближения и более точные методы. Начиная с первого расчета [2], примесные уровни как для мелких доноров, так и для мелких акцепторов вычислялись многократно в различных приближениях в случае примесей, расположенных в квазидвумерных квантовых ямах (см., например, [3-6]), в квазиодномерных квантовых проволоках [7–9]. Для случая полупроводниковых квантовых точек или полупроводниковых микрокристаллов в диэлектрической матрице имеются многочисленные расчеты в различных приближениях уровней энергии экситона и "свободной" дырки [10-14] (отметим, что при малых радиусах сферической квантовой точки, когда экситон квантуется как целое, эти задачи эквивалентны, см. [12]), а также появившиеся в последнее время расчеты состояний мелких доноров и акцепторов в них [9,15–17]. Следует отметить, что в подавляющем большинстве расчетов примесных состояний в структурах с квантовыми ямами вычислялись лишь энергии основного и нижнего возбужденного состояний, причем с использованием вариационного метода, обладающего хорошо известными недостатками (к которым относится, в частности, неопределенная точность вариационных волновых функций). Между тем, наряду с энергиями уровней для правильной идентификации оптических переходов необходимо знание еще одной из важнейших спектральных характеристик — сил осцилляторов переходов, что особенно важно в случае неводородоподобных примесей [18]. К таковым (неводородоподобным) относятся, в частности, акцепторы в полупроводниках с вырожденной валентной зоной: в отличие от случая водородоподобной примеси силы осцилляторов оптических переходов из основного состояния акцептора изменяются немонотонно с увеличением номера возбужденного уровня (с уменьшением энергии связи возбужденных состояний), причем даже для серий переходов в состояния одной симметрии [19,16]. В работе [16] мы вычислили зависимости энергий основного и ряда возбужденных уровней, а также сил осцилляторов дипольных оптических переходов мелких доноров и акцепторов от радиуса сферической квантовой точки с помощью нового численно-аналитического метода решения сингулярных многокомпонентных уравнений Шредингера [20,21], применение которого позволило решить задачу в рамках использованных приближений точно. В случае акцепторов при расчете из оптических спектров было использовано приближение бесконечно большого спин-орбитального расщепления валентных зон. Это приближение хорошо выполняется при расчете спектров акцепторов в объеме многих полупроводников, однако в случае квантовой точки при уменьшении ее радиуса из-за увеличения кинетической энергии носителей заряда эффекты спинорбитального взаимодействия между валентной зоной Γ_{8}^{+} и спин-отбитально отщепленной зоной Γ_{7}^{+} . В настоящей работе, используя метод [20,21], мы исследуем зависимости энергий основного и ряда возбужденных уровней, а также сил осцилляторов дипольных оптических переходов мелкого акцептора, расположенного в центре сферической квантовой точки, от величины спинорбитального расщепления валентных зон при различных значениях радиуса точки и величины отношения эффективных масс тяжелой и легкой дырок. Мы воспользуемся численно-аналитическим методом [20,21], что позволит решить задачу точно, в частности — получить точные аналитические выражения для волновых функций акцептора.

2. Рассмотрим для определенности акцепторный примесный атом, расположенный в центре сферической полупроводниковой квантовой точки радиуса R_0 . Потенциальный барьер на границе квантовой точки будем считать бесконечно высоким. В сферическом приближении [22] гамильтониан приближения эффективной массы акцептора, точно учитывающий конечную величину спин-орбитального расщепления валентных зон, можно представить в виде

$$H = p^{2} - 3\mu \left(P^{(2)}I^{(2)}\right) + \frac{2}{3}\left(\frac{1}{2} - \mathbf{I} \cdot \mathbf{S}\right)\Delta + \frac{2Z}{r}.$$
 (1)

Здесь $\hbar \mathbf{p}$ — оператор импульса; $P^{(2)}$ и $I^{(2)}$ — неприводимые сферические тензорные операторы второго ранга, составленные, как в [18], из компонент вектора **р** и вектора **I** момента количества движения с I = 1, **S** — оператор спина, $\mu = (4\gamma_2 + 6\gamma_3)/5\gamma_1$, где γ_i — параметры Латтинджера валентной зоны, Δ — величина спин-орбитального расщепления валентных зон; энергия и расстояния соответственно измеряются в единицах $R_a = m_0 e^4/2\hbar\kappa^2\gamma_1$ и $a = \hbar\kappa\gamma_1/m_0e^2$, где m_0 — масса свободного электрона, κ — статическая диэлектрическая проницаемость кристалла, Z — величина заряда примесного иона.

Волновую функцию, соответствующую гамильтониану (1), будем искать в виде

$$\Psi = \sum_{JL} R_{LJ}(r) | LJFF_z \rangle, \qquad (2)$$

где $|LJFF_z\rangle$ — известные функции L-J-связи, F — квантовое число полного момента $\mathbf{F} = \mathbf{L} + \mathbf{J}$, где $\mathbf{J} = \mathbf{I} + \mathbf{S}$, $R_{LJ}(r)$ — радиальные волновые функции. Квантовое число J принимает значения $J_1 = 3/2$, что соответствует вырожденной валентной зоне Γ_8^+ , и $J_2 = 1/2$, соответствующее спин-орбитально отщепленной зоне Γ_7^+ . Ясно, что, как и в случае $\Delta = \infty$ [22], состояния гамильтониана (1) классифицируются по значениям полного момента $F = 1/2, 3/2, \ldots$, являющегося хорошим квантовым числом, и далее мы будем обозначать их, как это принято в сферическом приближении в пределе $\Delta = \infty$ [22]. Подставляя выражение для волновой функции в уравнение Шредингера с гамильтонианом (1), получаем следующую систему трех связанных уравнений для радиальных функций (F > 1/2):

$$\begin{split} \left\{ \left(1 + \frac{1 - \beta^2}{1 + \beta^2} \mu \right) \left[\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} - \frac{L_1(L_1 + 1)}{r^2} \right] \\ &+ \frac{2Z}{r} + E \right\} R_{L_1 J_1} + \frac{2\beta\mu}{1 + \beta^2} \left[\frac{d^2}{dr^2} + \frac{2L_1 + 5}{r} \frac{d}{dr} + \frac{(l_1 + 1)(L_1 + 3)}{r_2} \right] R_{L_1 + 2J_1} \\ &+ \mu \left(L_1 J_1 \left| P^{(2)} \cdot I^{(2)} \right| L_2 J_2 \right) R_{L_2 J_2} = 0; \end{split}$$

$$-\frac{2\beta\mu}{1+\beta^{2}}\left[\frac{d^{2}}{dr^{2}}-\frac{2L_{1}+1}{r}\frac{d}{dr}+\frac{L_{1}(L_{1}+2)}{r^{2}}\right]R_{L_{1}J_{1}}$$

$$+\mu\left[(L_{1}+2)J_{1}\left|P^{(2)}\cdot I^{(2)}\right|L_{2}J_{2}\right]R_{L_{2}J_{2}}$$

$$+\left\{\left(1+\frac{1-\beta^{2}}{1+\beta^{2}}\mu\right)\left[\frac{d^{2}}{dr^{2}}+\frac{2}{r}\frac{d}{dr}\right]$$

$$-\frac{(L_{1}+2)(L_{1}+3)}{r^{2}}\right]+\frac{2Z}{r}+E\right\}R_{L_{1}+2,J_{1}}=0;$$

$$-\mu\left(L_{2}J_{2}\left|P^{(2)}\cdot I^{(2)}\right|L_{1}J_{1}\right)R_{L_{1}J_{1}}$$

$$-\mu\left[L_{2}J_{2}\left|P^{(2)}\cdot I^{(2)}\right|(L_{1}+2)J_{1}\right]R_{L_{1}+2,J_{1}}$$

$$+\left\{\frac{d^{2}}{dr^{2}}+\frac{2}{r}\frac{d}{dr}-\frac{L_{2}(L_{2}+1)}{r^{2}}$$

$$+\frac{2Z}{r}+E-\Delta\right\}R_{L_{2}J_{2}}=0.$$
(3)

Здесь $\beta = 3^{L_1 - F + 1} [(F + 3/2)/(F - 1/2)]^{1/2}$. Входящий в эти уравнения матричный элемент равен

$$\begin{pmatrix} LJ | P^{(2)} \cdot I^{(2)} | L'J' \end{pmatrix}$$

= $\sqrt{30}(-1)^{F+J+L} \begin{cases} F & J & L \\ 2 & L' & J' \end{cases} \begin{pmatrix} L || P^{(2)} || L' \end{pmatrix}.$ (4)

Здесь таблица в фигурных скобках — это 6*j*-символ, а $(L \parallel P^{(2)} \parallel L')$ — приведенный матричный элемент, который не равен нулю только при L = L' и $L = L' \pm 2$,

$$\begin{pmatrix} L \parallel P^{(2)} \parallel L' \end{pmatrix} = (-1)^{(L'-L)/2} \\ \times \left(\frac{(L+L'+2)(L+L')(4L+2-|L'-L|)(4+|L'-L|)}{24(L+L'-1+|L'-L|)(4L+6-3|L'-L|)} \right) \\ \times \left(\frac{d^2}{dr^2} + \frac{[(L'+1/2)(L'-L)+2-|L-L'|]}{r} \frac{d}{dr} \\ + (-1)^{(L'-L)/2} \frac{[4-2|L-L'|-(L'-3L+2)(5L'-L+2)]}{16r^2} \right).$$
(5)

Как и пределе бесконечно большого спин-орбитального расщепления валентных зон [22], случай F = 1/2 следует рассмотреть отдельно. В этом случае, как следует из правил сложения моментов, радиальное уравнение — это система двух связанных уравнений. Интересующие нас нечетные состояния с F = 1/2 описываются следующими уравнениями:

$$\left\{ (1+\mu)D + \frac{2Z}{r} + E \right\} R_{1J_1} - D\sqrt{2}\,\mu R_{1J_2} = 0,$$
$$\left\{ D + \frac{2Z}{r} + E - \Delta \right\} R_{1J_2} - D\sqrt{2}\,\mu R_{1J_1} = 0.$$
(6)

Отметим, что системы уравнений для радиальных волновых функций, описывающие состояния "свободной" дырки в сферической квантовой точке с учетом конечной

Физика и техника полупроводников, 1997, том 31, № 11

величины спин-орбитального расщепления, которые получаются из уравнений (3) и (6), если просто положить в них Z = 0, были получены ранее в [14]. Однако в [14] неправильно записан оператор, используемый при записи этих уравнений. Правильный его вид следующий:

$$A_l^+ = \frac{d^2}{dr^2} - \frac{2l+1}{r}\frac{d}{dr} + \frac{l(l+2)}{r^2}$$

Поскольку нас интересует зависимость акцепторных состояний от Δ при всех $0 \leqslant \Delta \leqslant \infty$, интересно проследить предельные переходы при $\Delta
ightarrow 0$ и $\Delta
ightarrow \infty$ для уравнений, описывающих эти состояния. Ясно, что при $\Delta \to \infty$ состояния акцептора описываются системой первых двух уравнений из (3) и первым из уравнений (6), в которых следует положить равной нулю радиальную функцию с индексом J₂. Уравнения, описывающие состояния акцептора при $\Delta = 0$, получены в [22] (уравнения (30a)–(30d)), однако здесь необходимо сделать следующие замечания. Во-первых, в системе (30d) из [22], описывающей состояние $\Phi(P_2)$, $\Phi(P_2) = F_3(r)|L = 1, I = 1, F = 2, F_z + G_3(r)|L = 3, I$ $= 1, F = 2, F_{z}$, неправильно выбраны относительные знаки радиальных функций $F_3(r)$ и $G_3(r)$, что не сказывается при вычислении энергий, но, естественно, приводит к неправильным результатам при вычислении матричных элементов. Правильные уравнения для этих функций имеют вид

$$\begin{bmatrix} (1+\frac{1}{5}\mu) \left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - \frac{2}{r^2}\right) & -\frac{3}{5}\sqrt{6}\mu \left(\frac{d^2}{dr^2} + \frac{7}{r}\frac{d}{dr} - \frac{8}{r^2}\right) \\ +\frac{2}{r} + E \\ -\frac{3}{5}\sqrt{6}\mu \left(\frac{d^2}{dr^2} - \frac{3}{r}\frac{d}{dr} + \frac{3}{r^2}\right) & (1+\frac{4}{5}\mu) \left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - \frac{12}{r^2}\right) \\ +\frac{2}{r} + E \\ \times \begin{bmatrix} F_3(r) \\ G_3(r) \end{bmatrix} = 0.$$
(7)

Кроме того важно отметить, что спин-орбитальное взаимодействие снимает вырождение некоторых состояний и при $\Delta \rightarrow 0$ системы уравнений (3), (6) для некоторых различных состояний сводятся к одинаковым уравнениям. При $\Delta \rightarrow 0$ системы связанных радиальных уравнений (3) и (6) расцепляются и сводятся, соответственно, к совокупности системы двух уравнений и одного уравнения и совокупности двух не связанных уравнений. При этом, когда $\Delta \rightarrow 0$, к системе (7) сводятся уравнения (3) как для радиальных функций нижнего состояния с F = 5/2, $L_2 = L_1 + 2 = 3$ ($2P_{5/2}$), так и первого возбужденного состояния с F = 3/2, $L_2 = L_1 = 1$ ($3P_{3/2}$). К уравнению же

$$\left\{ (1-\mu) \left[\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} - \frac{2}{r^2} \right] + \frac{2}{r} + E \right\} F_2(r) = 0, \quad (8)$$

решение которого определяет при $\Delta = 0$ радиальную функцию для состояния $\Phi(P_1) = F_2(r)|L = 1, I = 1, F = 1, F_z$ [22], при $\Delta \to 0$ сводится как уравнение (3),

описывающее нижнее состояние с F = 3/2, $L_2 = L_1 = 1$ $(2P_{3/2})$, так и уравнение (6) также для нижнего состояния с F = 1/2, $L_2 = L_1 = 1$ $(2P_{1/2})$.

3. Как ясно из выражений для матричных элементов (4), (5), уравнения (3) можно представить в виде

$$wr^{2} \frac{d^{2}R}{dr^{2}} + p_{0}r \frac{dR}{dr} + (q_{0} + q_{1}r + q_{2}r^{2})R = 0, \quad (9)$$

где *w*, p_0 , q_i — постоянные матрицы размерности 3 × 3, а R = R(r) — трехкомпонентная вектор-функция. Наиболее важной особенностью рассматриваемой задачи (как и других задач, приводящих к решению уравнений типа (9)) является наличие особых точек у многокомпонентного радиального уравнения Шредингера (9). Поскольку мы будем искать решения (3) на конечном интервале изменения r, в нашем случае имеется только регулярная особая точка r = 0. В [21] развит численноаналитический метод построения всех решений из фундаментальной системы уравнений типа (9) (в [21] рассмотрены уравнения более общего вида) при произвольной конечной их размерности в случае произвольного вида матриц w, p₀, q_i. В рассматриваемом случае простых матриц коэффициентов, воспользовавшись результатами [20,21], можно сразу записать все решения из фундаментальной системы решений уравнений (3).

Определим следующую последовательность матриц:

$$\Gamma_k(\rho) = w(k+\rho)(k+\rho-1) + p_0(k+\rho) + q_0, \quad k = 0, \ 1, \dots$$
(10)

Как поведение решений уравнений (3) при $r \to 0$, так и структура решений определяются корнями следующего уравнения [20,21]:

$$\det \Gamma_0(\rho) = 0. \tag{11}$$

В случае гамильтонианов, являющихся квадратичной формой импульса, решения уравнения (11) известны точно при любой размерности системы радиальных уравнений (9) [20]. В рассматриваемом нами случае гамильтониана (1) решения уравнения (11) и, соответственно, вид решений уравнений (3) различаются для двух типов состояний. Действительно, поскольку гамильтониан (1) сохраняет квантовое число полного момента и четность (мы пренебрегаем слабыми эффектами, связанными с отсутствием центра инверсии у полупроводников с решеткой цинковой обманки), а квантовое число J принимает значения $J_1 = 3/2$ и $J_2 = 1/2$, то при данном значении *F* и четности квантовое число L_1 равно либо F - 3/2, при этом $L_2 = L_1 + 2$, либо F - 1/2, тогда $L_2 = L_1$. Используя это свойство, которое следует просто из правил сложения моментов, и явные выражения для матричных элементов (4), (5), легко понять, что в этих двух случаях уравнения (3) несколько отличаются и их следует рассматривать по отдельности.

а) $L_1 = F - 3/2$, $L_2 = L_1 + 2$. В этом случае операторы, действующие на функции R_{L_1+2,J_1} и $R_{L_2J_2}$ и определяющие

поведение функций в окрестности r = 0, т. е. операторы вида

$$P_L(r) \equiv \frac{d^2}{dr^2} + \frac{a_L}{r}\frac{d}{dr} + \frac{b_L}{r^2},$$
 (12)

совпадают с точностью до константы. Тогда неотрицательные решения уравнения (11), которые соответствуют регулярным при r = 0 решениям уравнений(3), равны $\rho_1 = \rho_2 = L_1 + 2$, $\rho_3 = L_1$, а решения (3) имеют вид

$$R^{(1)} = r^{\rho_1} \sum_{k=0}^{\infty} R_k^{(1)} r^k, \qquad R^{(2)} = r^{\rho_2} \sum_{k=0}^{\infty} R_k^{(2)} r^k,$$
$$R^{(3)} = r^{\rho_3} \sum_{k=0}^{\infty} R_k^{(3)} r^k + \left(K_1 R^{(1)} + K_2 R^{(2)}\right) \ln r, \qquad (13)$$

где коэффициенты $R_k^{(i)}$ и константы $K_{1,2}$ определяются из следующих рекуррентных соотношений:

$$\Gamma_{0}(\rho_{1})R_{0}^{1,2} = 0,$$

$$\Gamma_{k}(\rho_{1})R_{k}^{1,2} + q_{1}R_{k-1}^{1,2} + q_{2}R_{k-2}^{1,2} = 0,$$

$$k = 1, 2, \dots (R_{l} = 0, l < 0);$$
(14a)

$$\begin{split} &\Gamma_{0}(\rho_{3})R_{0}^{(3)} = 0, \\ &\Gamma_{1}(\rho_{3})R_{1}^{(3)} + q_{1}R_{0}^{(3)} = 0, \\ &\Gamma_{k}(\rho_{3})R_{k}^{(3)} + q_{1}R_{k-1}^{(3)} + q_{2}R_{k-2}^{(3)} + \{2(\rho_{3}+k) + q_{0} - 1\} \\ &\times (K_{1}R_{k-\rho_{1}+\rho_{3}}^{(1)} + K_{2}R_{k-\rho_{1}+\rho_{3}}^{(2)}) = 0, \ k \ge 1. \end{split}$$
(146)

Отметим, что рекуррентные соотношения для коэффициентов $R_k^{(1)}$ и $R_k^{(2)}$ одинаковы, но решения $R_0^{(1,2)}$ первого из уравнений (14а) выбираются линейно-независимыми.

б) $L_1 = F - 1/2$, $L_2 = L_1$. В этом случае совпадают с точностью до константы операторы (12), действующие на $R_{L_1J_1}$ и $R_{L_2J_2}$. Регулярным при r = 0 решениям уравнений (3) соответствуют корни (11) $\rho_1 = L_1 + 2$, $\rho_2 = \rho_3 = L_1$, а решения имеют вид

$$R^{(1)} = r^{\rho_1} \sum_{k=0}^{\infty} R_k^{(1)} r^k,$$

$$R^{(2)} = r^{\rho_2} \sum_{k=0}^{\infty} R_k^{(2)} r^k + (K_2 R^{(1)}) \ln r,$$

$$R^{(3)} = r^{\rho_3} \sum_{k=0}^{\infty} R_k^{(3)} r^k + (K_3 R^{(1)}) \ln r,$$
 (15)

где коэффициенты $R_k^{(i)}$ и константы $K_{2,3}$ определяются из рекуррентных соотношений

$$\begin{split} &\Gamma_0(\rho_1) R_0^{(1)} = 0, \\ &\Gamma_k(\rho_1) R_k^{(1)} + q_1 R_{k-1}^{(1)} + q_2 R_{k-2}^{(1)} = 0, \\ &k = 1, \, 2, \, \dots \, (R_l = 0, \, l < 0); \end{split} \tag{16a}$$

$$\Gamma_{0}(\rho_{3})R_{0}^{(2,3)} = 0,$$

$$\Gamma_{1}(\rho_{3})R_{1}^{(2,3)} + q_{1}R_{0}^{(2,3)} = 0,$$

$$\Gamma_{k}(\rho_{3})R_{k}^{(2,3)} + q_{1}R_{k-1}^{(2,3)} + q_{2}R_{k-2}^{(2,3)}$$

$$+ \{2(\rho_{3} + k) + q_{0} - 1\}$$

$$\times K_{2,3}R_{k-\rho_{2}+\rho_{3}}^{(1)} = 0, \quad k \ge 1.$$
(166)

Видно, что рекуррентные соотношения для коэффициентов $R_k^{(2)}$ и $R_k^{(3)}$ одинаковы, но решения первого из уравнений (16б) для $R_0^{(2,3)}$ выбираются линейно-независимыми.

Ясно, что уравнение (6) также можно представить в виде (9) с соответствующими матрицами размерности 2×2 , однако его решения отличаются от полученных в [16]. Поскольку в этом случае уравнение (11) имеет кратные корни, регулярные при r = 0, решения (6) не содержат логарифмической функции и имеют вид

$$R^{(1)} = r^{\rho_1} \sum_{k=0}^{\infty} R_k^{(1)} r^k, \quad R^{(2)} = r^{\rho_2} \sum_{k=0}^{\infty} R_k^{(2)} r^k, \qquad (17)$$

где $\rho_1 = \rho_2 = 1$. Коэффициенты $R_k^{(1,2)}$ определяются из рекуррентных соотношений

$$\Gamma_{0}(\rho_{1})R_{0}^{(1,2)} = 0,$$

$$\Gamma_{k}(\rho_{1})R_{k}^{(1,2)} + q_{1}R_{k-1}^{(1,2)} + q_{2}R_{k-2}^{(1,2)} = 0,$$

$$k = 1, 2, \dots (R_{l} = 0, l < 0),$$
(18)

в которых выбираются два линейно-независимых решения первого из уравнений (18).

Как доказано нами в [21], степенные ряды в (13), (15) и (17) имеют бесконечный радиус сходимости и, следовательно, выражения (13)-(18) полностью определяют волновые функции всех состояний гамильтониана (1), причем как в объеме полупроводника (см. [20]), так и в квантовой точке, и для того чтобы вычислить энергии уровней и волновые функции акцептора, необходимо только удовлетворить соответствующим граничным условиям. Отметим, что эти выражения определяют волновые функции акцептора не только в сферическом приближении, но и при учете гофрировки валентных зон в первом порядке по "гофрировочному" параметру $\delta = (\gamma_3 - \gamma_2)/\gamma_1$, которому пропорциональны слагаемые кубической симметрии, добавляемые к (1) при ее учете [18,22]. Действительно, в этом приближении гофрировка вообще не влияет на состояния с F < 5/2и приводит к расщеплению состояний с F = 5/2(поскольку дипольные переходы из основного состояния в состояния с F > 5/2 запрещены [18], мы их не будем рассматривать). Волновые функции теперь характеризуются по одному из представлений $\Gamma = \Gamma_8^{\pm}, \Gamma_7^{\pm}$ и Γ_6^{\pm} группы $T_d \times C_i$ гамильтониана, а интересующее нас состояние $2P_{5/2}$ расщепляется на состояния $2\Gamma_8^-$ и 1Г₇⁻. Однако уравнения для радиальных функций этих состояний имеют прежний вид (3), только с другими постоянными коэффициентами перед операторами типа (12), а их решения, как и для состояния $2P_{5/2}$, даются формулами (13), (14).

В случае акцептора в квантовой точке необходимо удовлетворить граничным условиям при $r = R_0$, т.е. найти такие значения энергий E и линейные комбинации решений, для которых выполняется условие $(R)_{r=R_0} = 0$. Удобнее всего это сделать следующим образом. Образуем из решений (13) или (15) (в зависимости от рассматриваемого состояния) в точке R_0 матрицу A размером 3×3 :

$$A(E) = \left(R^{(1)}, R^{(2)}, R^{(3)}\right)_{r=R_0}$$

Тогда процедура вычисления энергий уровней на некотором интервале [E', E''] сводится к численному решению "стрельбой" уравнения det A(E) = 0. Если при некотором $E = E_0$ выполняется условие det $A(E_0) = 0$, то

$$\left(R^{(1)}\right)_{r=R_0} = \alpha_1 \left(R^{(2)}\right)_{r=R_0} + \alpha_2 \left(R^{(3)}\right)_{r=R_0},$$

где константы $\alpha_{1,2}$ соответствуют собственному значению E_0 . Тогда нормированное решение, соответствующее этой энергии и удовлетворяющее граничным условиям, имеет вид

$$\varphi(r) = C\left(R^{(1)} - \alpha_1 R^{(2)} - \alpha_2 R^{(3)}\right),$$

а константа С определяется из условия нормировки

$$\int_{0}^{R_{0}} (\varphi^{T} \varphi) dr = 1.$$

Отметим, что в рамках используемого подхода совершенно аналогично вычисляются уровни энергии и волновые функции "свободной" дырки в квантовой точке, т. е. дырки в отсутствие акцептора в яме. При этом нужно просто положить Z = 0 в уравнении (3), выражения (13)–(18), как и прежде, являются точными решениями (3), а коэффициенты перед логарифмическими членами в (13), (15) обращаются в нуль — они пропорциональны Z [20].

4. Зная волновые функции акцептора, легко вычислить силы осцилляторов внутрипримесных переходов. Поскольку симметрия рассматриваемой системы сферическая, силы осцилляторов дипольных оптических переходов между связанными состояниями *a* и *b* акцептора в квантовой точке даются известным выражением для объема полупроводника [23]:

$$f(a \to b) = \frac{2m_0}{\hbar^2 \gamma_1} \frac{E_b - E_a}{g_a} \sum_{m=1}^{g_a} \sum_{n=1}^{g_b} |(\mathbf{e} \cdot \mathbf{r})_{\mathbf{mn}}|^2.$$
(19)

Здесь E_a , E_b и g_a , g_b — соответственно энергии и кратности вырождения уровней a и b, e — единичный вектор поляризации излучения. Коэффициент перед двойной суммой в (19) определяется правилом сумм сил осцилляторов для акцепторных примесей, которое зависит лишь от одного параметра Латтинджера γ_1 [23,18]

и равен единице, если измерять энергии и расстояния соответственно в единицах R_a и a, как в (1). Тогда, подставляя в (19) выражение (2) для волновых функций, используя теорему Вигнера–Эккарта и свойство ортогональности 3*j*-символов, имеем

$$f(a \to b) = \frac{E_b - E_a}{3g_a} \left\{ \sum_{JL} (L_a J_a F_a ||r|| L_b J_b F_b) \right\}^2, \quad (20)$$

где приведенный матричный элемент равен

$$(L_a J_a F_a ||r|| L_b J_b F_b) = \delta_{J_a J_b} (-1)^{F_b + J + L_a + 1} \\ \times [(2F_a + 1)(2F_b + 1)]^{1/2} \\ \times \begin{cases} L_b & J & F_b \\ F_a & 1 & L_a \end{cases} (L_a ||r|| L_b).$$
(21)

Поскольку при $\Delta
ightarrow 0$ некоторые различные возбужденные состояния становятся вырожденными (они описываются одинаковыми уравнениями, см. п. 2), интересно определить, как распределяется сила осциллятора, соответствующая при $\Delta = 0$ переходу в данное вырожденное состояние, между переходами в возбужденные состояния, которые его образуют при $\Delta \rightarrow 0$. Непосредственный расчет по формулам (20), (21) показывает, что сила осциллятора перехода из основного состояния (1S₁ в обозначениях [22], $\Delta = 0$) в возбужденное состояние 2 P_1 делится между переходами $1S_{3/2}(1\Gamma_8^+) \rightarrow 2P_{3/2}(1\Gamma_8^-)$ и $1S_{3/2}(1\Gamma_8^+) \rightarrow 2P_{1/2}(1\Gamma_6^-)$ при $\Delta \rightarrow 0$ в отношении 5: 1, а сила осциллятора перехода в состояние 2P2 между переходами $1S_{3/2}(1\Gamma_8^+) \rightarrow 2P_{5/2}(2\Gamma_8^- + 1\Gamma_7^-)$ и $1S_{3/2}(1\Gamma_8^+) \rightarrow 3P_{3/2}(3\Gamma_8^-)$ в отношении 9 : 1. Здесь в скобках указаны обозначения состояний, в которые переходят данные состояния при учете гофрировки.

5. Результаты расчета зависимости энергий уровней и сил осцилляторов дипольных оптических переходов из основного в возбужденные нечетные состояния мелкого акцептора в сферической квантовой точке от энергии спин-орбитального расщепления валентных зон Δ приведены в табл. 1-4. Здесь же представлена зависимость от Δ энергии нижнего уровня свободной дырки E(Z=0)(вторая колонка в таблицах). В таблицах энергии указаны в единицах R_a , силы осцилляторов в 10^{-2} . Мы вычислили эти величины при различных значениях радиуса точки и различных значениях параметра μ , что позволяет оценить их для акцепторов в квантовых точках из разных материалов. Действительно, в сферическом приближении при использовании безразмерных единиц параметры μ и Δ полностью характеризуют валентную зону полупроводника, что видно, в частности, из уравнений (1), (3). Следует отметить, что отношение эффективных масс тяжелых и легких дырок (зона Γ_8^+) β выражается только через μ : $\beta = (1 + \mu)/(1 - \mu)$. В таблицах представлены наиболее интересные результаты расчетов при значениях $\mu = 0.8, 0.5$, характерных для многих полупроводников, и при $R_0 = 1.3$. Здесь же приведены соответствующие данные, полученные в пределе

Δ	E(Z = 0)	$E(1S_{3/2})$	$E(2P_{3/2})$	f	$E(3P_{3/2})$	f	$E(2P_{5/2})$	f	$E(2P_{1/2})$	f
0	0.449	-3.22	-1.25	0.041	-0.663	1.75	-0.663	15.8	-1.25	0.008
0.1	0.464	-3.21	-1.23	0.065	-0.607	1.79	-0.646	15.8	-1.18	0.020
0.5	0.511	-3.17	-1.19	0.151	-0.371	2.53	-0.595	15.8	-0.921	0.126
1	0.548	-3.12	-1.17	0.217	-0.255	2.52	-0.558	15.7	-0.608	0.390
2	0.592	-3.05	-1.14	0.265	-0.205	2.31	-0.520	15.9	-0.028	1.54
3	0.616	-3.00	-1.13	0.274	-0.177	2.34	-0.502	16.2	0.476	2.95
5	0.644	-2.92	-1.12	0.269	-0.147	2.42	-0.485	16.9	1.22	6.91
10	0.672	-2.81	-1.11	0.245	-0.117	2.56	-0.469	18.1	2.01	13.2
∞	0.677	-2.57	-1.10	0.21	-0.073	2.90	-0.450	20.5	2.78	21.3

Таблица 1. Энергии уровней *E* и силы осцилляторов *f* оптических переходов из основного в возбужденные состояния мелкого акцептора в квантовой точке как функции спин-орбитального расщепления Δ . $\mu = 0.8$, $R_0 = 3$

Таблица 2. Энергии уровней *E* и силы осцилляторов *f* оптических переходов из основного в возбужденные состояния мелкого акцептора в квантовой точке как функции спин-орбитального расщепления Δ . $\mu = 0.8$, $R_0 = 1$

Δ	E(Z = 0)	$E(1S_{3/2})$	$E(2P_{3/2})$	f	$E(3P_{3/2})$	f	$E(2P_{5/2})$	f	$E(2P_{1/2})$	f
0	4.04	-1.52	0.076	$1 \cdot 10^{-4}$	4.76	1.79	4.76	16.1	0.076	$2 \cdot 10^{-5}$
1	4.19	-1.42	0.228	$3 \cdot 10^{-6}$	5.30	2.50	4.92	16.2	0.738	0.015
5	4.64	-1.16	0.639	0.001	6.79	7.26	5.15	16.5	3.29	0.479
10	4.99	-0.999	0.927	0.004	7.31	8.30	5.24	17.1	6.27	1.85
20	5.38	-0.854	1.23	0.010	7.72	8.65	5.29	17.8	11.4	6.20
50	5.84	-0.720	1.55	0.023	8.15	9.09	5.32	18.5	21.0	21.4
100	6.08	-0.659	1.72	0.034	8.37	9.33	5.33	18.8	26.8	34.0
∞	6.09	-0.58	1.95	0.05	8.69	9.66	5.35	19.1	32.6	45.8

Таблица 3. Энергии уровней *E* и силы осцилляторов *f* оптических переходов из основного в возбужденные состояния мелкого акцептора в квантовой точке как функции спин-орбитального расщепления Δ . $\mu = 0.5$, $R_0 = 3$

Δ	E(Z=0)	$E(1S_{3/2})$	$E(2P_{3/2})$	f	$E(3P_{3/2})$	f	$E(2P_{5/2})$	f	$E(2P_{1/2})$	f
0	1.03	-1.35	-0.222	3.20	0.621	4.32	0.621	38.9	-0.222	0.640
0.1	1.03	-1.34	-0.207	3.46	0.692	4.09	0.629	39.0	-0.156	0.826
0.5	1.04	-1.33	-0.165	4.19	0.989	3.56	0.654	39.4	0.095	1.83
1	1.04	-1.31	-0.136	4.67	1.35	3.85	0.675	40.0	0.377	3.673
2	1.04	-1.29	-0.108	5.06	1.71	4.72	0.701	40.8	0.829	8.77
3	1.04	-1.28	-0.095	5.20	1.75	4.06	0.715	41.5	1.14	14.3
5	1.05	-1.26	-0.081	5.30	1.78	3.70	0.730	42.4	1.50	22.6
10	1.05	-1.23	-0.069	5.32	1.79	3.48	0.745	43.6	1.81	30.7
∞	1.05	-1.19	-0.054	5.3	1.81	3.22	0.76	45.6	2.10	37.7

Таблица 4. Энергии уровней *E* и силы осцилляторов *f* оптических переходов из основного в возбужденные состояния мелкого акцептора в квантовой точке как функции спин-орбитального расщепления Δ . $\mu = 0.5$, $R_0 = 1$

Δ	E(Z = 0)	$E(1S_{3/2})$	$E(2P_{3/2})$	f	$E(3P_{3/2})$	f	$E(2P_{5/2})$	f	$E(2P_{1/2})$	f
0	9.29	3.49	6.30	2.85	14.6	4.36	14.6	39.3	6.30	0.570
1	9.30	3.51	6.46	3.13	15.3	4.04	14.7	39.6	6.96	0.830
5	9.34	3.58	6.87	3.92	18.3	3.23	14.9	40.5	9.46	2.33
10	9.36	3.63	7.16	4.43	21.8	3.01	15.0	41.2	12.2	5.12
20	9.38	3.69	7.43	4.87	24.7	2.33	15.1	42.1	16.3	12.3
50	9.41	3.76	7.70	5.20	25.2	1.66	15.3	43.1	22.0	28.2
100	9.42	3.79	7.82	5.32	25.4	1.54	15.4	43.6	24.3	35.9
∞	9.44	3.84	7.98	5.4	25.4	1.46	15.4	44.3	26.6	41.9

Зависимость энергий нижних уровней свободной дырки и акциптора (E) от квадрата обратного радиуса квантовой точки (R_0). $\mu = 0.8$, $\Delta = 0$. $I - S_1(Z = 0)$, $2 - P_1(Z = 0)$, $3 - 1S_1$, $4 - 2P_1$, $5 - 2P_2$. Энергия E приведена в единицах R_a , радиус квантовой точки R_0 в единицах a.

 $\Delta = \infty$ в [16]. Состояния в таблицах обозначены так, как это принято в сферическом приближении [22]. Следует отметить, что, как показано в работе [14], в квантовых точках малого радиуса в случае больших величин β и при достаточно малых Δ может происходить инверсия порядка состояний свободной дырки s- и p-типа. Действительно, в нашем расчете при $\mu = 0.8$ в квантовой точке радиуса $R_0 = 3$ при $0 \leq \Delta \leq 12$, а в точке радиуса $R_0=1$ при $0\leqslant\Delta\leqslant103$ нижним уровнем размерного квантования свободной дырки является состояние $P_{3/2}$, в то время как при больших Δ , а в случае $\mu = 0.5$ при всех $0 \leq \Delta \leq \infty$, — состояние $S_{3/2}$. При этом инверсии акцепторных состояний не происходит ни при каких из исследованных параметров, что видно как из таблиц, так и из рисунка, на котором изображены результаты расчета зависимости энергий нижних уровней свободной дырки и акцепторных уровней от квадрата обратного радиуса квантовой точки при "критических" значениях $\Delta = 0, \ \mu = 0.8, \$ когда инверсия порядка состояний свободной дырки s- и p-типа имеет место при всех конечных радиусах точки. Из таблиц видно, что полученные выше (п. 4) соотношения между силами осцилляторов при $\Delta \rightarrow 0$ выполняются в численном расчете точно. Видно также, что энергии как основного, так и ряда возбужденных состояний акцептора слабо зависят от Δ даже при малых радиусах квантовой точки, но при этом силы осцилляторов переходов могут изменяться значительно — на порядки величин. Результаты расчетов показывают, что наиболее существенное влияние спинорбитальное взаимодействие оказывает на спектры энергий и силы осцилляторов оптических переходов при достаточно больших величинах β и достаточно малых радиусах точки. Понятно, что при малых величинах β , т.е. при $\mu \to 0$, состояния акцептора вообще перестают зависеть от Δ — это легко увидеть из уравнений (3), (6). Наибольшее влияние спин-орбитальное взаимодействие оказывает как на энергию, так и на силу осциллятора перхода в нижнее состояние симметрии Γ_6^- (в сферическом приближении его обозначают как $2P_{1/2}$), поскольку его характер изменяется от тяжелодырочного (при $\Delta = 0$) до легкодырочного (при $\Delta = \infty$). Действительно, как видно из уравнений (6) и (8), в сферическом приближении и в первом порядке теории возмущений по параметру δ , которому пропорциональны слагаемые, описывающие гофрировку валентных зон, соответствующее уравнение имеет в этих пределах чисто "водородоподобный" вид с L = 1 и с сильно отличающимися массами, пропорциональными соответственно $1/(1-\mu)$ и $1/(1+\mu)$. Именно поэтому при малых радиусах квантовой точки широко используемое при расчетах приближение бесконечно большого спин-орбитального расщепления валентных зон становится применимым для этих состояний лишь при очень больших Δ .

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований.

Список литературы

- [1] S. Fraizzoli, A. Pasquarello. Physica Scripta, T39, 182 (1991).
- [2] G. Bastard. Phys. Rev. B, 24, 4714 (1981).
- [3] C. Mailhiot, Y.-C. Chang, T.C. McGill. Phys. Rev. B, 26, 4449 (1982).
- [4] R.L. Green, K.K. Bajaj. Phys. Rev. B, 34, 961 (1986).
- [5] W.T. Masselink, Y.-C. Chang, H. Morkoc. Phys. Rev. B, 32, 5190 (1985).
- [6] S. Fraizzoli, A. Pasquarello. Phys. Rev. B, 44, 1118 (1991).
- [7] G.W. Bryant. Phys. Rev. B, 29, 6632 (1984).
- [8] J. Lee, H.N. Spector. J. Vac. Sci. Technol. B, 16, (1984).
- [9] D.S. Chuu, C.M. Hsiao, W.N. Mei. Phys. Rev. B, **46**, 3898 (1992).
- [10] Ал.Л. Эфрос. А.Л. Эфрос. ФТП, 16, 1209 (1982).
- [11] L.E. Brus. J. Chem. Phys., 80, 4403 (1984).
- [12] А.И. Екимов, А.А. Онущенко, А.Г. Плюхин, Ал.Л. Эфрос. ЖЭТФ, 88, 1490 (1985).
- [13] M. Sweeny, J. Xu. Sol. St. Commun., 72, 301 (1989).
- [14] Г.Б. Григорян, Э.М. Казарян, Ал.Л. Эфрос, Т.В. Язева. ФТТ, 32, 1772 (1990).
- [15] J.-L. Zhu. Phys. Rev. B, 39, 8780 (1989); J.-L. Zhu, J.-J. Xiong,
 B.-L. Gu. Phys. Rev. B, 41, 6001 (1990).
- [16] В.И. Галиев, А.Ф. Полупанов. ФТП, 27, 663 (1993).
- [17] J.-L. Zhu, X. Chen. J. Phys.: Condens. Matter., 6, L123 (1994).
- [18] Ш.М. Коган, А.Ф. Полупанов. ЖЭТФ, 80, 394 (1981).
- [19] А.Ф. Полупанов, Ш.М. Коган. ФТП, 13, 2338 (1979).
- [20] В.И. Галиев, А.Ф. Полупанов. Препринт N 18(519) ИРЭ АН СССР (М., 1989).
- [21] V.I. Galiev, A.F. Polupanov, I.E. Shparlinski. J. Comput. Appl. Math., 39, 151 (1992).
- [22] A. Baldereschi, N.O. Lipari. Phys. Rev. B, 8, 1525 (1973);
 Phys. Rev. B, 9, 1525 (1974).
- [23] Sh.M. Kogan, A.F. Polupanov. Sol. St. Commun., 27, 1281 (1978).

Редактор Л.В. Шаронова

Effect of the spin-orbit coupling on the acceptor optical spectra in a semiconductor quantum dot

A.F. Polupanov, V.I. Galiev, M.G. Novak

Institution of Radioengineering and Electronics, Russian Academy of Sciences, 103907 Moscow, Russia

Abstract The energy levels and oscillator strengths of dipole optical transitions from the ground states to the odd excited states of a shallow acceptor placed in the center of a spherical quantum dot are calculated as functions of the spin-orbit split-off energy Δ at different values of the dot radius *R* and different values of a heavy-to-light-hole mass ratio β . It was found that the spin-orbit coupling has a significant effect on some acceptor states in the actual range of large value of β and at sufficiently small values of *R*. The spin-orbit coupling has the most significant effect on the lowest state of the Γ_6^- symmetry since its character changes from the heavy-hole one (when $\Delta = 0$) to the light-hole one ($\Delta = \infty$). In the framework of the used approximations the problem is solved exactly, in particular, exact analytical expressions for acceptor wave functions have been derived.