Энергия связи кулоновских акцепторов в системах квантовых ям

© В.И. Белявский*, М.В. Гольдфарб*, Ю.В. Копаев

Физический институт им. П.Н. Лебедева Российской академии наук, 117924 Москва, Россия *Воронежский государственный педагогический университет, 394043 Воронеж, Россия

(Получена 21 июня 1996 г. Принята к печати 19 декабря 1996 г.)

Энергия связи кулоновского акцепторного состояния в гетероструктуре типа I с несколькими туннельносвязанными квантовыми ямами исследована в зависимости от положения примеси в структуре. Показано, что особенности размерно-квантованных состояний дырок существенно влияют на величину энергии связи, особенно при возникновении подзон с отрицательными эффективными массами.

1. Перспективы реализации физических приборов на основе полупроводниковых наноструктур (НС) стимулируют их активное исследование [1]. Дополнительные возможности в создании НС с заданными свойствами открывает возможность их селективного легирования [2]. При этом очевидно, что энергетический спектр и огибающие функции примесных состояний определяются особенностями размерно-квантованных состояний и положением примеси в данной НС. Теоретически водородоподобные состояния в изолированной бесконечно глубокой квантовой яме (КЯ) исследованы в [3] и в дальнейшем уточнялись с учетом конечной высоты барьеров, различия диэлектрических проницаемостей и эффективных масс в материалах КЯ и барьерных слоев, а также особенностей структуры валентной зоны [4-6]. Экспериментальные исследования [7] подтверждают вывод о том, что энергия связи акцепторной примеси зависит от положения последней в НС. В связи с этим особый интерес представляют асимметричные системы КЯ, в которых наиболее эффективна передислокация огибающих функций носителей под действием внешних полей [8], что позволяет использовать эти структуры как элементы интегральных схем наноэлектроники [9]. Передислокация огибающих влияет и на спектр примесей, расположенных в ГС и способных заметно повлиять на свойства структуры.

В большинстве работ, посвященных изучению локализованных состояний в НС, используется вариационный метод в приближении эффективной массы. Результаты подобных расчетов сильно зависят от вида пробных вариационных функций [10]. Настоящая работа посвящена изучению мелких акцепторных состояний в асимметричных НС с КЯ, таких как Al_xGa_{1-x}As-GaAs. Мы воспользуемся методикой, примененной ранее [11,12] для описания экситонных состояний в структурах с достаточно узкими КЯ и туннельно-прозрачными барьерами. Применительно к примесным центрам она заключается в разложении локализованных огибающих функций примесного центра по двумерному (2D) базису в пространстве огибающих функций свободных носителей в данной НС. При этом сравнительно несложно учесть различия эффектиных масс и диэлектрических проницаемостей материалов КЯ и барьеров, а также,

что наиболее важно, эффекты непараболичности валентной зоны. Метод эффективной массы, использующий определенную информацию о структуре энергетических зон массивного полупроводника, будучи примененным к исследованию локализованных состояний в НС, сталкивается с серьезными трудностями, связанными с необходимостью учета потенциала, обеспечивающего пространственное ограничение электронов и дырок и понижающего симметрию системы. Поэтому представляется естественным в основу описания локализованных состояний положить такой вариант метода эффективной массы, который бы учитывал необходимую информацию непосредственно о структуре 2D подзон размерного квантования изучаемой HC. Таким образом могут быть приняты во внимание эффекты, связанные со сложной структурой валентной зоны, в частности смешивание состояний тяжелых и легких дырок [13]. При рассмотрении акцеторных состояний приближение, учитывающее лишь одну подзону, оказывается недостаточным, поскольку энергия связи акцептора (в отличие от мелких доноров [3,14]), вообще говоря, сравнима с характерным расстоянием между подзонами в НС. Ширина рассматриваемых квантовых ям и барьеров, разумеется, является одним из факторов, определяющих точность расчетов в рамках метода огибающих функций в приближении эффективной массы. Считается [8], что метод достаточно эффективен, если характерные размеры ям и барьеров превышают величину порядка десятка ангстрем. Именно такой порядок величины имеют характерные размеры элементов структур, рассмотренных нами в приводимых в статье численных примерах. В этой статье не ставится задача вычисления энергии связи примесного состояния со спектроскопической точностью, а определение качественной зависимости энергии связи от положения примеси в структуре. Для этой цели метод огибающих функций в приближении эффективной массы представляется наиболее приемлемым [8].

2. Представим эффективный гамильтониан в виде $H = H^{(0)} + U$, где $H^{(0)}$ — гамильтониан свободных дырок в данной HC, U — оператор кулоновского вза-имодействия дырки с примесным центром. Огибающую

функцию акцепторного состояния запишем как

$$|\rangle = \sum_{\lambda,\beta} |\lambda\beta\rangle\langle\lambda\beta|\rangle, \qquad (1)$$

где λ — комбинированный индекс, включающий индекс валентной зоны (тяжелых *HH*- или легких *LH*-дыкок) и номер *n* подзоны размерного квантования, β — 2D радиус-вектор элементарной ячейки в плоскости HC. Базисные функции $|\lambda\beta\rangle$ можно представить в виде линейной комбинации функций

$$|\lambda k\rangle = \frac{1}{\sqrt{S}} f_{\lambda k}(z) \exp(ik\rho),$$
 (2)

образующих базис, в котором диагонален оператор Гамильтона свободных дырок. Здесь S-площадь ГС, k — 2D квазиволновой вектор. Поскольку эффективный радиус локализации примесных состояний в полупроводниках превышает постоянную решетки а, определяющий вклад в формирование огибающих |) вносит относительно малая область квазиимпульсов в окрестности центра 2D зоны Бриллюэна, $ka \ll 1$. Кроме того, недиагональные элементы гамильтониана Латтинджера, который обычно используется для описания дырочных состояний в полупроводниковых HC [8], при $k \to 0$ гораздо меньше диагональных, так что при малых k возможна упрощенная классификация дырочных состояний, связанных с их характером при k = 0. С учетом сказанного можно пренебречь зависимостью одномерных (1D) огибающих функций $f_{\lambda k}(z)$ от k, обозначая их просто $f_{\lambda}(z)$. В этом случае базис

$$|\lambda\beta\rangle = \frac{1}{\sqrt{N}} \sum_{k} |\lambda k\rangle \exp(-ik\beta)$$
 (3)

вырождается в точечный (в плоскости HC) базис, промодулированный огибающими функциями $f_{\lambda}(z)$; здесь N число элементарных ячеек в плоскости HC.

Система уравнений для коэффициентов разложения огибающей функции локализованного состояния по базису (3) имеет вид

$$(E - E_{\lambda}(-i\nabla))\langle\lambda\beta|\rangle = \sum_{\lambda'\beta'}\langle\lambda\beta|U|\lambda'\beta'\rangle\langle\lambda'\beta'|\rangle, \quad (4)$$

где $E_{\lambda}(k)$ — 2D закон дисперсии дырки в λ -подзоне, ∇ — 2D оператор градиента. Матричные элементы оператора кулоновского взаимодействия диагональны по β , поэтому, вводя сокращенные обозначения $\langle \lambda\beta|U|\lambda'\beta'\rangle \equiv U_{\lambda\lambda'}$ и, кроме того, $U_{\lambda\lambda} \equiv U_{\lambda}$, можно определить операторы $H_{\lambda} = E_{\lambda}(-i\nabla) + U_{\lambda}$ и переписать (4) как

$$(E - H_{\lambda})\langle\lambda\beta|\rangle = \sum_{\lambda'\neq\lambda} U_{\lambda\lambda'}\langle\lambda'\beta|\rangle.$$
(5)

Решение системы уравнений (5) позволяет определить огибающие функции и энергетический спектр HC с акцепторной примесью с учетом смешивания состояний,

отщепляющихся от всех 2D подзон. При этом вся информация о профиле 1D потенциала дырки в данной HC, а также об эффективных массах дырок в материалах KЯ и барьеров, содержится в законе дисперсии $E_n(k)$ и 1D огибающих функциях дырок.

3. Рассмотрим случай, когда акцепторное состояние формируется исключительно состояниями зоны тяжелых дырок, и воспользуемся для простоты двухподзонным приближением, т.е. в (5) учтем всего две подзоны: НН1 и НН2; индекс валентной зоны НН далее опускаем, таким образом, роль λ теперь играет номер подзоны (n = 1) 2D подзоны с учетом влияния состояний верхней (n = 2) подзоны. Отметим, что используемый здесь приближенный подход к описанию локализованных состояний может быть применен и для учета влияния всех остальных подзон. Подобное усложнение принципиально не изменяет качественную картину, полученную в двухподзонном приближении. Используя для $\langle \lambda \beta | \rangle$ обозначение $\psi_n(\beta)$ и определяя операторы Грина для гамильтонианов $H_n(n = 1, 2)$ как $G_n(E) = (E - H_n)^{-1}$, систему двух уравнений (5) можно свести к одному уравнению

$$(E - H_1)\psi_1 = U_{12}G_2(E)U_{21}\psi_1, \tag{6}$$

которое можно рассматривать как некое уравнение Шредингера с зависящим от энергии потенциалом.

Пусть $\varphi_{n\nu}(\beta)$ — собственные функции оператора H_n , где ν — 2D квантовое число, нумерующее собственные функции оператора H_n . Представим функцию Грина $G_n(E)$ в виде разложения Гильберта–Шмидта:

$$G_n(E;\beta, \beta') = \sum_{\nu} \frac{\varphi_{n\nu}^*(\beta')\varphi_{n\nu}(\beta)}{E - E_{n\nu}},$$
(7)

где $E_{n\nu}$ — спектр оператора H_n . Система функций $\varphi_{n\nu}(\beta)$ является полной, поэтому $\psi_n(\beta)$ можно представить в виде разложения по этой системе

$$\psi_n(\beta) = \sum_{\nu} a_{n\nu} \varphi_{n\nu}(\beta) \tag{8}$$

и привести уравнение (6) к виду

$$\{E - E_{1\nu} - W_{\nu\nu}(E)\}a_{1\nu} = \sum_{\nu' \neq \nu} W_{\nu\nu'}(E)a_{1\nu'}, \qquad (9)$$

где

$$W_{\nu\nu'}(E) \equiv \sum_{\mu} \frac{u_{\nu\mu}^{12} u_{\mu\nu'}^{21}}{E - E_{2\mu}},$$
(10)

$$\sum_{\beta} \varphi_{1\nu}^{*}(\beta) U_{12}(\beta) \varphi_{2\mu}(\beta) \equiv u_{\nu\mu}^{12};$$
$$\sum_{\beta'} \varphi_{2\mu}^{*}(\beta') U_{12}(\beta') \varphi_{1\nu'}(\beta') \equiv u_{\mu\nu'}^{21}.$$
 (11)

При определении энергии кулоновского взаимодействия дырки с примесным центром заметное влияние может оказать различие диэлектрических проницаемостей КЯ и барьеров. Кулоновские матричные элементы могут быть записаны как

$$U_{nn'}(\beta, z_0) = \int dz f_n^*(z) G(\beta, z, z_0) f_{n'}(z), \qquad (12)$$

где введена электростатическая функция Грина $G(\beta, z, z_0)$, в явном виде для рассматриваемых здесь НС выписанная, например, в [11]. Имеются основания полагать, что недиагональные элементы (10) гораздо меньше диагональных $W_{\nu\nu'} \ll W_{\nu\nu}, \nu \neq n'$. Это неравенство следует из условия ортонормированности 1D огибающих функций и тем более справедливо в случае асимметричных HC, в которых огибающие, соответствующие разных подзонам, как правило, имеют максимумы в различных КЯ. Поэтому в нулевом приближении энергия уровня $E_{1\nu}$, отщепившегося от нижней подзоны, может быть найдена из решения уравнения

$$E - E_{1\nu} - W_{\nu\nu}(E) = 0.$$
(13)

Таким образом, в этом приближении определение энергетического спектра мелкого акцептора в HC сводится к вычислению спектра $E_{1\nu}$, рассчитанного с учетом лишь одной нижней подзоны, и поправки $W_{\nu\nu}$, связанной с влиянием состояний соседней подзоны.

4. Уравнение, определяющее вклад *n*-й подзоны в огибающую функцию акцептора без учета состояний соседних подзон, можно записать в виде [11]

$$\left[E_n^{(0)} - \frac{\hbar^2}{2m_n}\nabla^2 + V_n - U_{nn}(\beta, z_0) - E\right]\psi_n(\beta) = 0.$$
(14)

Здесь $E_n^{(0)}$ и m_n — энергия (при k = 0) и эффективная масса дырки в *n*-подзоне. Оператор V_n , учитывающий (при малых k) непараболичность *n*-подзоны, можно записать как [11] $V_n = \hbar^2 b_n^2 k^4 / 2m_0$, где m_0 — масса свободного электрона, типичные значения феноменологического параметра b_n заключены между 10 и 100 Å [11]. Решение уравнения (14) может быть получено вариационным методом, при этом пробную огибающую функцию основного состояния естественно выбрать в виде 2D водородоподобной орбитали

$$\langle n\beta | 0 \rangle = \sqrt{\frac{2\kappa^2}{\pi}} \exp(-\kappa/\beta)$$
 (15)

с единственным вариационным параметром к. Следует отметить, что другой приближенный метод расчета энергетического спектра [15], использованный в [11,12] для исследования экситонных состояний, приводит к вполне аналогичным результатам.

Метод [15] основан на представлении гамильтониана в (14) в виде

$$H_n = H_n^{(C)}(\chi) + H_n^{(1)}(\chi),$$
(16)

где

$$H_n^{(C)}(\chi) = E_n^{(0)} - \frac{\hbar^2}{2m^*} \nabla^2 + \frac{\chi e^2}{\beta},$$
 (17)

Физика и техника полупроводников, 1997, том 31, № 9

а оператор $H_n^{(1)}(\chi)$ дополняет гамильтониан (17) до полного гамильтониана в уравнении (14). Обычно параметр χ определяется из условия равенства нулю первой поправки к энергии, обусловленной оператором

$$H_n^{(1)}(\chi) = V_n + U_{nn}(\beta; z_0) - \frac{\chi e^2}{\beta}.$$
 (18)

Оператор (17) имеет как непрерывные, так и дискретные собственные значения. Последние, очевидно, представляют собой кулоновскую серию уравнений [16] с энергиями

$$E_n^{(C)} = E_n^{(0)} + \frac{\chi^2 \mathbf{R} \mathbf{y}^{(n)}}{\left(n + \frac{1}{2}\right)^2},$$
(19)

где m = 0, 1, 2, ..., а $\operatorname{Ry}^{(n)} = |m_n|e^4/2\hbar^2$. Параметр χ в (19) определяется из уравнения

$$\langle nm|H_n^{(1)}(\chi)|nm\rangle = 0, \qquad (20)$$

в котором собственные $|nm\rangle$ функции гамильтониана (17) при соответствующем выборе параметра χ есть, как и (15), обычные волновые функции 2D атома водорода. В частности, для основного состояния огибающая функция имеет вид (15), если положить $\kappa a_n = 2\chi$, где $a_n = \hbar^2/|m_n|e^2$. Метод [15] может быть несколько усовершенствован [17], если вместо условия (20) потребовать, чтобы энергия примесного состояния, вычисленная в 1-м порядке по возмущению (18), имела минимум как функция параметра χ . В этом случае, очевидно, результат расчета энергии основного состояния по методике [15] вполне соответствует вариационной процедуре.

При определении поправки, связанной с влиянием состояний соседней подзоны, можно считать, что основной вклад в величину $W_{\nu\nu}$ вносят состояния сплошного спектра. Водородоподобная серия дискретных уровней, отщепляющаяся от верхней подзоны в поле мелкого акцептора, не может заметно повлиять на величину W_{nn} при условии, что энергия связи этих состояний меньше расстояния между подзонами. В этом приближении μ , очевидно, соответствует 2D квазиимпульсу k. Учитывая, что основной вклад в формирование локализованного состояния дают $k \ll a^{-1}$, (11) можно приближенно записать как

$$u_{\nu k}^{12} = -\frac{2e^2}{\varepsilon} \sqrt{\frac{2\pi}{S}} B_{12}(z_0).$$
 (21)

Здесь

$$B_{12}(z_0) = \int dz f_1^*(z) F(\kappa |z - z_0|) f_2(z), \qquad (22)$$

а функция $F(\zeta)$ при относительно небольших различиях диэлектрических проницаемостей КЯ и барьеров определяется как [11]

$$F(\varsigma) = \varsigma \left\{ \frac{\pi}{2} [\mathrm{H}_{1}(\varsigma) - \mathrm{Y}_{1}(\varsigma)] - 1 \right\}, \qquad (23)$$

где $Y_1(\varsigma)$ и $H_1(\varsigma)$ — функции Бесселя и Струве соответственно. Таким образом, поправку, связанную с учетом

второй подзоны, можно оценить как

$$W_{\nu\nu}(E) \Rightarrow \left(\frac{2e^2}{\varepsilon}\right)^2 |B_{12}(z_0)|^2 \int \frac{kdk}{E - E_2(k)},\qquad(24)$$

где интегрирование производится по 2D зоне Бриллюэна.

Если закон дисперсии для второй подзоны имеет вид

$$E_2(k) = E_2^{(0)} + \frac{\hbar^2 k^2}{2m_2},$$
(25)

то

$$W_{\nu\nu}(E) = -4\mathrm{Ry}^{(2)}|B_{12}(z_0)|^2 \ln \left| 1 + \frac{\pi^2 \hbar^2}{2m_2 a^2 (E_2^{(0)} - E)} \right|,$$
(26)

и уравнение (13) легко может быть решено графически. Грубо энергию локализованного состояния можно оценить как

$$E \approx E_{1\nu} - 4\mathrm{Ry}^{(2)}|B_{12}(z_0)|^2 \ln \left|1 + \frac{\pi^2 \hbar^2}{2m_2 a^2 \Delta}\right|, \qquad (27)$$

где $\Delta = E_2^{(0)} - E_1^{(0)}$.

Наиболее интересным представляется случай, когда закон дисперсии во второй подзоне соответствует дырочным возбуждениям с отрицательной эффективной массой:

$$E_2(k) = E_2^{(0)} - \frac{\hbar^2 k^2}{2m_2} + \frac{\hbar^2}{2m_0} b_2^2 k^4.$$
 (28)

В этом случае интеграл в (19) выражается через элементарные функции:

$$W_{\nu\nu}(E) = -4\mathrm{Ry}^{(2)}|B_{12}(z_0)|^2 \frac{1}{\sqrt{\frac{8m_2b_2^2}{\hbar^2}(E_2^{(0)} - E) - 1}} \times \left\{ \frac{\pi}{2} + \mathrm{arctg} \frac{1}{\sqrt{\frac{8m_2b_2^2}{\hbar^2}(E_2^{(0)} - E) - 1}} \right\}, \quad (29)$$

и грубая оценка энергии примесного состояния может быть получена из решения трансцендентного уравнения

$$E - E_{1\nu} + 4\pi \mathrm{Ry}^{(2)} |B_{12}(z_0)|^2 \times \frac{1}{\sqrt{\frac{8m_2 b_2^2}{\hbar^2} (E_2^{(0)} - E) - 1}} = 0.$$
(30)

5. В качестве примера на рисунке приведена зависимость (кривая 1) энергии связи акцепторного состояния от положения примеси в HC Al_{0.3}Ga_{0.7}As–GaAs с двумя КЯ шириной 5*a* и 3*a* и барьером шириной 4*a*, где *a* — постоянная решетки. Внешние барьерные слои предполагаются полубесконечными. Для данной HC расстояние между подзонами равно 32.1 мэВ, эффективная масса во второй подзоне отрицательна и по абсолютной величине равна $0.079m_0$, значение параметра b_n принято

Энергия основного состояния кулоновского акцетора как функция положения примесного атома в HC Al_{0.3}Ga_{0.7}As–GaAs: l — с учетом подзон *HH*1 и *HH*2 и различия диэлектрических проницаемостей КЯ и барьеров; 2 — то же, но без учета различия диэлектрических проницаемостей; 3 — с учетом только нижней (*HH*1) подзоны. Одно деление на горизонтальной оси соответствует постоянной решетки 5.65 Å.

равным 25 Å. Параметры HC соответствуют использованным в [11]. Для сравнения на рисунке представлены (кривая 2) результаты вычислений без учета различия диэлектрических проницаемостей в материалах КЯ и барьеров (при расчетах использовано их среднее значение). Учет одной лишь первой подзоны приводит к кривой 3, имеющей заметный минимум внутри более широкой КЯ, в которой в основном локализована 1D огибающая функция нижней подзоны.

Углубление уровня из-за влияния второй подзоны тем больше, чем сильнее перекрываются огибающие функции 2D подзон и чем меньше эффективная масса во второй подзоне и энергетический зазор между подзонами. Аналогично можно учесть влияние состояний первой подзоны на примесные (квазилокальные) уровни, отщепляющиеся от второй подзоны. В этом случае учет влияния первой подзоны уменьшает энергию связи. Поправка мала в области внутреннего барьера, где огибающая второй подзоны имеет узел, и заметно больше в ямах, где 1D огибающие велики; в этом случае вклад второй подзоны по порядку величины может быть сравним с величиной энергии связи акцепторного состояния.

Необходимо отметить, что, вопреки весьма распространенному мнению о том, что энергия связи мелкого акцептора всегда заметно превышает энергию связи донора [4], для таких распространенных HC, как $Al_xGa_{1-x}As$ -GaAs, сравнительно легко привести примеры структур, в которых эти энергии сравнимы (см. рисунок, кривая *I*). Однако близко (по сравнению с подзонами проводимости) расположенные валентные подзоны и, соответственно, более равномерное распределение 1D огибающих вдоль оси роста HC приводят к тому, что зависимость энергии связи от положения примеси в HC оказывается более слабой как по сравнению с глубокими примесями [18], так и с мелкими донорами [19].

В асимметричных системах КЯ огибающие функции в области внутренних барьеров могут иметь величину, сравнимую с их величиной в области КЯ. Поэтому учет различия диэлектрических свойств материалов КЯ и барьеров может приводить к заметному изменению энергии связи, тем более, что разница диэлектрических проницаемостей материалов КЯ и барьеров в гетероструктурах $Al_xGa_{1-x}As$ -GaAs при $x \sim 0.4$ составляет около 10% и пренебрежимо малой, вообще говоря, не является.

Работа выполнена при поддержке Российского фонда фундаментальных исследований и Министерства науки и технической политики России по программе "Физика твердотельных наноструктур".

Список литературы

- H. Sakaki. Localization and Confinement of Electrons in Semiconductors. Springer Ser. Sol. St. Sci. (1991) v. 97, p. 2.
- [2] R. Dingle, H. Stoermer, A.C. Gossard, W. Wiegmann. Appl. Phys. Lett., 33, 665 (1978).
- [3] G. Bastaed. Phys. Rev. B, 24, 1714 (1981).
- [4] A. Pasquarello, L.C. Andreani, R. Buczko. Phys. Rev. B, 40, 5602 (1989).
- [5] W.T. Masselink, Y.-C. Chang, H. Morkoc. Phys. Rev. B, 28, 7373 (1983).
- [6] S. Chaudhury, K.K. Bagaj. Phys. Rev. B, 29, 1803 (1984).
- [7] G.C. Rune, P.O. Holtz, M. Sundatam et al. Phys. Rev. B, 44, 4010 (1991).
- [8] G. Bastard, J.A. Brum, R. Ferreira. Sol. St. Phys., 44, 229 (1990).
- [9] A.A. Gorbatsevich, V.V. Kapaev, Yu.V. Kopaev, V.Yu. Kremlev. Phys. Low-Dim. Structure, 5, 57 (1994).
- [10] Ф.Г. Пикус. ФТП, 26, 45 (1992).
- [11] В.И. Белявский, Ю.В. Копаев, С.Т. Павлов, С.В. Шевцов. ФТТ, 37, 3147 (1995).
- [12] В.И. Белявский, Ю.В. Копаев, С.Т. Павлов, С.В. Шевцов. Письма ЖЭТФ, 61, 279 (1995).
- [13] Y.-C. Chang, J.N. Shulman. Appl. Phys. Lett., 43, 536 (1983).
- [14] Е.М. Ивченко, А.В. Кавокин. ФТП, 25, 1780 (1991).
- [15] Y.C. Lee, W.N. Mei, K.C. Lin. J. Phys. C, 15, L469 (1982).
- [16] M. Shinada, S. Sugano. J. Phys. Soc. Jpn., 21, 1936 (1966).
- [17] Y. Fu, K.A. Chao. Phys. Rev. B, 43, 12 626 (1991).
- [18] В.И. Белявский, Ю.В. Копаев, Н.В. Корняков, С.В. Шевцов. Письма ЖЭТФ, 61, 1004 (1995).
- [19] В.И. Белявский, М.В. Гольдфарб, Ю.В. Копаев, С.В. Шевцов. ФТП (в печати).

Редактор В.В. Чалдышев

Binding energy of Coulomb acceptors in quantum well systems

V.I. Belyavsky*, M.V. Goldfarb*, Yu.V. Kopaev

P.N. Lebedev Physical Institute of Russian Academy of Sciences, 117924 Moscow, Russia *Voronezh State Pedagogical Institute, 394043 Voronezh, Russia

Abstract Binding energy of Coulomb acceptor state in type-I heterostructure with a few coupled quantum wells is investigated as a function of the impurity position in a structure. It is shown that there is an essential influence of the character of size-quantized hole states on the binding energy value, particulary, in the case of arising of subbands with negative effective masses.