# Спектры люминесценции голубых и зеленых светодиодов на основе многослойных гетероструктур InGaN/AIGaN/GaN с квантовыми ямами

© К.Г. Золина, В.Е. Кудряшов, А.Н. Туркин, А.Э. Юнович

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия

(Получена 27 сентября 1996 г. Принята к печати 18 марта 1997 г.)

Исследованы спектры люминесценции голубых и зеленых светодиодов на основе гетероструктур  $In_xGa_{1-x}N/Al_yGa_{1-y}N/GaN$  с тонким (2÷3 нм) активным слоем  $In_xGa_{1-x}N$  в интервале температур 100÷300 К и в интервале токов  $J = 0.01 \div 20$  мА. Спектры голубых светодиодов имеют максимумы в интервале  $\hbar\omega_{max} = 2.55 \div 2.75$  зВ, зеленых —  $\hbar\omega_{max} = 2.38 \div 2.50$  зВ в зависимости от содержания In в активном слое. Спектральная интенсивность основной полосы экспоненциально падает в длинноволновой области с энергией в показателе  $E_0 = 45 \div 70$  мэВ; это описывается моделью, учитывающей хвосты плотности состояний в двумерной активной области и степени их заполнения вблизи краев зон. При малых токах в спектрах голубых диодов наблюдается туннельная излучательная рекомбинация с максимумом в спектре, сдвигающимся с напряжением. Обсуждается модель энергетической диаграммы гетероструктур.

#### 1. Введение

В последние три года были достигнуты большие успехи в создании излучающих гетероструктур из GaN и твердых растворов на его основе. Работы по проблеме были представлены на 1-м Международном семинаре по GaN и аналогичным материалам на сессии Общества материаловедения (дек. 1995 г., [1]) и 1-м Европейском семинаре по GaN [2]. Рекордные результаты по разработке светодиодов (СД) для коротковолновой (фиолетовой, голубой, зеленой) части видимого спектра были достигнуты методом эпитаксии из металлоорганических соединений (МОС) группой фирмы Ничия [3,4]. работе [4] было показано, что на основе многослойных гетероструктур InGaN/AlGaN/GaN с тонким  $(2 \div 3 \text{ нм})$ активным слоем из InGaN возможно создание светодиодов в указанной спектральной области с внешним квантовым выходом до  $4 \div 9\%$  (см. также обзор [5]).

Спектры электролюминесценции (ЭЛ) этих светодиодов были исследованы в зависимости от тока J и температуры T в [4,6]. В настоящей работе продолжено исследование спектров ЭЛ этих светодиодов в широком диапазоне изменений J и проведен подробный анализ особенностей спектров. Эти особенности представляют интерес для понимания механизмов излучательной рекомбинации и факторов, влияющих на квантовый выход излучения в гетероструктурах InGaN/AlGaN/GaN. В структурах с тонким активным слоем существенны квантово-размерные и туннельные эффекты, флуктуации потенциалов в квантовых ямах и легирование прилегающих широкозонных областей.

## 2. Методика эксперимента

Были исследованы 10 светодиодов из структур, выращенных методом МОС гидридной эпитаксии, описанные в [4] (рис. 1). На сапфировой подложке и буферном слое GaN ( $\approx 300$  Å) выращен слой *n*-GaN: Si (t = 5 мкм). На нем выращен активный тонкий ( $d \approx 20 \div 30$  Å) слой In<sub>x</sub>Ga<sub>1-x</sub>N. Длина волны в максимуме спектра изменяется от голубой до зеленой области, если состав х активного слоя изменяется в пределах 0.2-0.43; она зависит и от толщины слоя. Затем следует широкозонный слой p-Al<sub>0.1</sub>Ga<sub>0.9</sub>N:Mg ( $\approx 1000$  Å) — барьер для электронов, необходимый для инжекции дырок и согласования решетки активного слоя с верхним контактным слоем *p*-GaN: Mg (≈ 0.5 мкм). При выращивании *p*-Al<sub>0.1</sub>Ga<sub>0.9</sub>N:Mg предотвращает испарение активного слоя во время роста сравнительно толстого верхнего слоя. На *p*-GaN: Mg нанесен металлический контакт Ni-Au. Металлический контакт Ti-Al к слою n-GaN создан после стравливания части структуры. Площадь кристалла с p-n-гетеропереходом  $S = 350 \times 350$  мкм<sup>2</sup>. Для сравнения были исследованы также спектры двух голубых и двух зеленых СД предыдуших разработок фирмы Ничия [3], в которых имеется еще два эпи-



**Рис. 1.** Энергетическая диаграмма гетероструктур  $In_xGa_{1-x}N/Al_yGa_{1-y}N/GaN$ , описанных в работе [4].

| <br>Группа | N диода    | $\hbar \omega_{ m max},$ эВ | <i>E</i> <sub>0</sub> , мэВ | т     | $\Delta F_n$ , эВ | $E_g^*,$ эВ | $\Delta(\hbar\omega)_{1/2},$ эВ | $\eta_e,\%^*$ |
|------------|------------|-----------------------------|-----------------------------|-------|-------------------|-------------|---------------------------------|---------------|
| <br>Ι      | G3         | 2.435                       | 68.2                        | 1.105 | -0.125            | 2.584       | 0.152                           |               |
|            | <i>G</i> 2 | 2.445                       | 69.9                        | 1.108 | -0.166            | 2.646       | 0.152                           | 4.1           |
|            | <i>G</i> 4 | 2.446                       | 66.8                        | 1.123 | -0.123            | 2.559       | 0.151                           | 4.0           |
| II         | <i>B</i> 3 | 2.709                       | 54.5                        | 1.005 | -0.141            | 2.853       | 0.133                           | 0.86          |
|            | <i>B</i> 2 | 2.732                       | 44.3                        | 1.059 | -0.089            | 2.824       | 0.131                           |               |
|            | B5         | 2.752                       | 49.1                        | 1.104 | -0.091            | 2.851       | 0.134                           | 0.70          |

Таблица 1. Параметры диодов I и II группы

П р и м е ч а н и е. \* Измерения внешнего квантового выхода  $\eta_e$  описаны в [13].

таксиальных слоя между *n*-GaN:Si и активным слоем: *n*-Al<sub>0.1</sub>Ga<sub>0.9</sub>N:Si (100 нм) и *n*-In<sub>0.05</sub>Ga<sub>0.95</sub>N:Si (50 нм).

Излучение наблюдалось в стандартной светодиодной конструкции через пластмассовый фокусирующий купол над кристаллом со структурой.

Спектры излучения исследовались на комплексе КСВУ-12, сигнал с которого через цифроаналоговые преобразователи и интерфейс подавался на компьютер IBM PC-486. Было разработано программное обеспечение для управления спектрльным комплексом на языке QBASIK. Математическая обработка проводилась программай ORIGIN и EASYPLOT.

#### 3. Экспериментальные результаты

3.1. Общий вид спектров. На рис. 2 представлены спектры электролюминесценции нескольких диодов (табл. 1) при комнатной температуре и постоянном токе J = 10 мА. Максимумы в спектрах голубых и сине-фиолетовых диодов (II группа) лежат в интервале  $\hbar \omega_{\text{max}} = 2.55 \div 2.75$  эВ в зависимости от содержания In в активном слое (x = 0.20 ÷ 0.25). Для зеленых диодов (I группа)  $\hbar \omega_{\text{max}} = 2.38 \div 2.45$  эВ ( $x = 0.40 \div 0.44$ ). Диоды третьей группы были изготовлены технологией с дополнительными гетерослоями [3], они соответствуют сине-зеленой и зеленовато-синей областям  $\hbar\omega_{\rm max} = 2.48 \div 2.60\, {\rm sB}.$ Таким образом, светодиоды, созданные из гетероструктур InGaN/AlGaN/GaN, перекрывают весь коротковолновый диапазон видимой области в соответствии с [1-4]. Для краткости диоды второй группы мы будем называть голубыми.

3.2. Зависимость спектров от тока и формы спектральной полосы. На рис. З показаны спектры излучения при  $J = 20 \div 0.2$  мА и комнатной T. Спад спектров описывается экспонентами:  $I \sim \exp(\hbar\omega/E_1)$  в коротковолновой и  $T \sim \exp(-\hbar\omega/E_0)$  в длинноволновой области. Показатель экспоненты  $E_1$  — порядка  $1.0 \div 1.3kT$ ;  $E_0 \gg kT$  и не зависит от T. Максимум в спектрах голубых диодов практически не зависел от тока в этом интервале. Максимум в спектрах зеленых диодов сдвигался с повышением тока в коротковолновую сторону на  $\approx 60$  мэВ.

Для голубых диодов интенсивность резко падала при  $J < 0.7 \div 0.2$  мА, что заметно на рис. 3, *а* по изменению расстояния между кривыми в логарифмическом масштабе. При малых токах длинноволновая часть спектров голубых диодов отклоняется от экспоненты. Для зеленых светодиодов резкого падения I(J) не наблюдалось, и спектры с разрешением до  $\approx 0.5$  мэВ можно было исследовать до J = 10 мкА (рис. 3, *b*). Ширина спектров практически не зависела от тока и изменялась для разных диодов в пределах  $\Delta(\hbar\omega)_{1/2} = 130 \div 150$  мэВ (см. табл. 1). Это позволяло исследовать зависимость интенсивности излучения  $\Phi$  от J при постоянной T по измерениям  $I_{\text{max}}(J)$ .

3.3. Структура спектров, обусловленная интерференцией. Большая интенсивность излучения позволила исследовать спектры с разрешением до 0.2 мэВ, с точностью до 0.1% и обнаружить структуру, показанную на рис. 4. Периодическая структура четко разрешалась, когда из экспериментального спектра выделялось гладкое приближение полосы (точечная линия). Она объясняется интерференцией излучения, отражаемого от границ прозрачного слоя *n*-GaN (толщиной  $t \pm \delta t = 5 \pm 0.5$  мкм) [6,7]. Значения  $n[1 + (\lambda/n)(dn/d\lambda)]$ (*n* — показатель преломления,  $dn/d\lambda$  — дисперсия), вычисленные по формуле

$$n[1 + (\lambda/n)(dn/d\lambda)] = (\lambda/2)(1 + \lambda/\Delta\lambda)/t \qquad (1)$$

 $(\Delta \lambda$  — период), при t = 5.0 мкм имеют величину от 2.48 до 3.03. Поскольку  $\delta t \approx 0.5$  мкм, это согласуется с показателем преломления GaN (n = 2.5).

3.4. Туннельная излучательная рекомбинация. В спектрах люминесценции голубых светодиодов в области малых токов (J = 0.02-0.2 мА) была обнаружена спектральная полоса, положение максимума которой в интервале  $\hbar\omega_{\rm max} = 2.16 \div 2.39$  эВ изменяется пропорционально напряжению на p-n-переходе,  $\hbar\omega_{\rm max} \cong eU$  (рис. 5). В этой области квантовый выход основной спектральной полосы падает на 4 порядка. Обнаруженная полоса соответствует туннельному излучению, которое ранее было исследовано и теоретически описано для других прямозонных соединений типа  $A^{\rm III} B^{\rm V}$  [8]. В зеленых СД этой полосы не наблюдалось, что коррелирует с их большим последовательным сопротивлением и отсутствием туннельной компоненты тока.



**Рис. 2.** Спектры электролюминесценции светодиодов из гетероструктур  $In_xGa_{1-x}N/Al_yGa_{1-y}N/GaN$  с квантовыми ямами при комнатной *T* и *J* = 10 мA; I — первая группа, II — вторая группа, III — третья группа (см. табл. 1).

![](_page_2_Figure_3.jpeg)

**Рис. 3.** Спектры излучения светодиодов в зависимости от тока (цифры в столбце — *J*, мА) при комнатной температуре; *a* — голубой диод N 3 из I группы; *b* — зеленый диод N 2 из II группы. Стрелками отмечно положение максимумов. Точечные кривые — аппроксимация формулами (5)–(8).

3.5. Зависимость спектров от температуры. При понижении температуры длинноволновый спад спектра в основной полосе практически не изменялся, а коротковолновый становился заметно резче, параметр  $E_1$  уменьшался и становился зависящим от тока. Измерения температуры T термопарой, приклеенной к пластмассовому колпачку диода, показали, что нагрев диода током более 1 мА заметно изменяет T. Поэтому на рис. 6

показано изменение спектров одного из голубых диодов с T при J = 1 мА, при котором нагрев мал. Интегральная интенсивность излучения  $\Phi$  слабо зависела от T, изменяясь при этом токе не более чем в 2 раза.

3.6. Зависимость интенсивности от тока и напряжения. Интегральная интенсивность  $\Phi$  линейно зависела от тока *J* при *J* = 1÷10 мA (рис. 7), сублинейно росла при увеличении *J*, *J* > 10 мA, и сверхлинейно

![](_page_3_Figure_1.jpeg)

**Рис. 4.** Структура спектра ЭЛ (1) голубого светодиода (N 2, см. табл. 1), обусловленная интерференцией в слое GaN. Точечная линия 2 — гладкая аппроксимация формулами (5)–(8); 3 — отношение аппроксимационного (2) к экспериментальному (1) спектру; 4 — множитель  $(1 + a \cdot \cos(2p(\lambda - \lambda_0)/\Delta\lambda)); a = 0.020 \pm 0.001; \Delta\lambda = 7.02 \pm 0.07$ . Для кривых 3 и 4 ось ординат справа.

![](_page_3_Figure_3.jpeg)

**Рис. 5.** Спектры люминесценции голубого СД (N 5) при малых токах, комнатная температура. Пересечения прямой со спектрами обозначают энергии, соответствующие напряжению на диоде. *J*, мА: 1 - 0.025, 2 - 0.05, 3 - 0.075, 4 - 0.1, 5 - 0.15. Положение максимума полосы туннельного излучения, эВ: 1 - 2.13, 2 - 2.21, 3 - 2.27, 4 - 2.33. Энергия максимума коротковолновой полосы - 2.75 эВ.

падала при уменьшени<br/>и $J,\ J < 0.7\div 0.3$ м А. Это падение можно описать законом

$$\Phi \sim J^p. \tag{2}$$

Показатель *p* изменялся для голубых диодов в пределах  $p = 4.5 \div 5.2$ . Такая резкая зависимость обусловлена изменением соотношения безызлучательной и излучательной рекомбинации в структуре. Для зеленых диодов падение *I* было менее резким,  $p \approx 1.5$ . Это обусловлено различием механизмов протекания тока в исследованных диодах. В области малых токов для голубых диодов  $U \approx V$  (V — напряжение на диоде), так что

$$I_{\max} = \operatorname{const} \cdot \exp(eU/E_1),$$
 (3)

где  $E_1$  — показатель для интенсивности излучения. При больших токах сказывается последовательное сопротивление:  $V = U + JR_s$ . Исследование электрических свойств диодов дано в [9].

# 4. Обсуждение результатов

4.1. Энергетическая диаграмма. Рассмотрим энергетическую диаграмму гетероструктуры (рис. 1).

Эффективная ширина запрещенной зоны в активном слое  $E_g^*$  равна

$$E_g^* = E_g(x, T) + \Delta E_{1c} + \Delta E_{1v} + \Delta E_p - E_{\text{exc}} - \Delta E_{D,A},$$
 (4)

где  $E_g(x, T)$  — ширина запрещенной зоны в слое,  $\Delta E_{1c}$ ,  $\Delta E_{1v}$  — уровни размерного квантования в квантовых

![](_page_4_Figure_1.jpeg)

**Рис. 6.** Спектры люминесценции голубого диода (N 2, см. табл. 1) при различных температурах. Точки — аппроксимация по формулам (5)–(8).

ямах зон проводимости и валентной,  $\Delta E_p$  — изменение Eg вследствие деформаций из-за различия постоянных решетки в слоях гетероструктуры,  $E_{\rm exc}$  — энергия связи двумерного экситона,  $\Delta E_{D,A}$  — сдвиги краев эффективной запрещенной зоны, обусловленные потенциалом доноров и акцепторов [10,11]. Для расчетов надо знать зависимости  $E_g^*(x, T)$ ,  $m_{c,v}(X, T)$ , зависимости  $\Delta E_{1c}$ ,  $\Delta E_{1\nu}$  от разрывов зон  $\Delta E_{c,\nu}$  на обеих гетерограницах и от толщины активного слоя d. Надо знать тензоры упругих постоянных, потенциалы деформаций, энергии ионизации  $(E_D, E_A)$  и концентрации  $(N_D, N_A)$  доноров и акцепторов, их флуктуации в квантовой яме. Надо оценить флуктуации потенциала в зависимости от толщины ямы и концентраций примесей. Поскольку электрическое поле Е в p-n-переходе велико,  $E_{g}^{*}$ ,  $\Delta E_{1c}$ ,  $\Delta E_{1v}$  могут зависеть от Е.

Расчеты  $E_g^*$  громоздки и содержат не всегда известные конкретные параметры.

4.2. Модель описания спектров люминесценции. Здесь мы ограничимся анализом спектров в основной полосе, исходя из следующей модели. Эффективная излучательная рекомбинация идет тогда, когда носители тока обоих знаков инжектируются в активный слой — в квантовую яму. При малых токах может быть существенна туннельная компонента. При больших токах часть напряжения падает на последовательном сопротивлении, что обусловливает нагрев. Рассмотрим спектры излучения в квантовой яме в области токов и напряжений, соответствующих эффективному излучению.

Будем считать, что оптические переходы идут между краями двумерных зон проводимости и валентной, которые имеют хвосты плотности состояний, обусловленные различными флуктуациями потенциала (кулоновского поля примесей, уровней размерного квантования, состава твердого раствора, шероховатостей границ). Применим в этом случае формулу для 2D-плотности состояний  $N^2(\hbar\omega - E_g^*)$ , которая использовалась для описания люминесценции квантовых ям GaAs/AlGaAs в [11,12]:

$$I(\hbar\omega) \sim N^2 D(\hbar\omega - E_g^*) f_c(\hbar\omega, kT, F_n) \\ \times (1 - f_v(\hbar\omega, kT, F_p));$$
(5)

$$N^{2D}(\hbar\omega - E_g^*) = \left(1 + \exp\left(-(\hbar\omega - E_g^{\text{eff}})/E_0\right)\right)^{-1}.$$
 (6)

Энергетический параметр  $E_0$  характеризует экспоненциальный спад плотности состояний в длинноволновой области. В формуле (5)  $f_c$  и  $(1 - f_v)$  — функции заполнения состояний вблизи краев зон:

$$f_{c}(\hbar\omega, kT, F_{n}) = \left[1 + \exp\left(\left((1/m)(\hbar\omega - E_{g}^{*})\right) - \Delta F_{n}\right)/kT\right)\right]^{-1}, \quad (7)$$

$$\left(1 - f_{v}(\hbar\omega, kT, F_{p})\right) = \left[1 + \exp\left(\left((1(1/m))(\hbar\omega - E_{g}^{*})\right)\right)$$

$$-\Delta F_p \big)/kT \Big) \Big]^{-1}, \qquad (8)$$

где  $\Delta F_n = (F_n - E_c^*), \ \Delta F_p = (E_v^* - F_p)$  — квазиуровни Ферми для электронов и дырок в активной области,

![](_page_5_Figure_1.jpeg)

**Рис. 7.** Зависимости интенбивности излучения от напряжения (по верхней шкале) и от тока (по нижней шкале) для голубого (*a*) и зеленого (*b*) светодиодов; прямые соответствуют формулам (2) и (3); на верхней шкале указаны параметры аппроксимации по формулам (5)–(8); комнатная температура.

связанные соотношениями

 $F_n - F_p = eU; \ \Delta F_p = eU - E_g^* - \Delta F_n, \ E_g^* + E_c^* - E_v^*, \ (9)$ 

где U — падение напряжения на активной области, которое, вообще говоря, может быть меньше падения напряжения на p-n-переходе.

Параметры 1/m и (1 - 1/m) характеризуют доли энергии ( $\hbar\omega - E_g^*$ ), которую имеет электрон над эффективным краем зоны проводимости  $E_c^*$  и дырка под эффективным потолком валентной зоны  $E_v^*$ . Для прямых переходов в случае параболических зон  $m = (1+m_c^*/m_v^*)$ ; для переходов зона проводимости — уровень акцептора m = 1. В предлагаемой модели m — феноменологический параметр; если температура диода не измеряется непосредственно, увеличение параметра m с увеличением тока может свидетельствовать о нагреве диода.

Экспериментальные спектры были нормированы к единице в максимуме и описаны формулами (5)–(8) с помощью программ ORIGIN и EASY PLOT подгонкой параметров  $\hbar\omega_{\max}$ ,  $E_g^*$ , m,  $E_0$ ,  $\Delta F_n$  для наилучшего описания формы спектров в зависимости от напряжения U и температуры T.

Результаты представлены на рис. 3–5 и в табл. 2. Видно, что при изменении тока в широких пределах и изменении интенсивности в каждом спектре на два десятичных порядка аппроксимация хорошо описывает спектры. Среднеквадратичные отклонения по 2000 точ-кам составляли не более  $7 \cdot 10^{-3}$  на спектрах, нормированных к единице в максимуме; было обработано более 50 спектров. В табл. 2 представлены значения параметров и показано их изменение с током для двух диодов.

Энергия в показателе экспоненты, описывающей длинноволновый спад спектральной полосы — параметр  $E_0$ , почти не изменяется с изменением J для каждого диода, пока (для голубых СД) не начинает сказываться туннельное излучение.  $E_0$  увеличивается от диода к диоду от 49 до 70 мэВ по мере сдвига максимума  $\hbar\omega_{\rm max}$  в длинноволновую сторону. Таким образом, можно заключить, что флуктуации потенциала в квантовых ямах возрастают по мере увеличения содержания In в активном слое диодов. Анализ характерных флуктуаций потенциала в квантовых ямах рассматриваемых структур в известных авторам публикациях не проводился.

Таблица 2. Параметры в формулах (5)–(8), полученные подгонкой для экспериментальных спектров голубого и зеленого светодиодов. Число значащих цифр соответствует точности подгонки

| N<br>диода | <i>Ј</i> ,<br>мА | $V - JR_s$ , B | $\hbar\omega_{ m max},$ э $ m B$ | <i>Е</i> <sub>0</sub> ,<br>мэВ | т    | $\Delta F_n,$<br>эВ | <i>Е</i> <sub><i>g</i></sub> *,<br>эВ |
|------------|------------------|----------------|----------------------------------|--------------------------------|------|---------------------|---------------------------------------|
| <i>B</i> 3 | 0.2              | 2.464          | 2.708                            | 79.5                           | 0.96 | -0.176              | 2.899                                 |
|            | 0.5              | 2.615          | 2.707                            | 60.4                           | 0.99 | -0.143              | 2.858                                 |
|            | 1                | 2.692          | 2.709                            | 56.5                           | 1.00 | -0.132              | 2.845                                 |
|            | 2                | 2.772          | 2.708                            | 55.5                           | 0.99 | -0.138              | 2.848                                 |
|            | 5                | 2.880          | 2.709                            | 54.8                           | 0.99 | -0.140              | 2.850                                 |
|            | 10               | 3.080          | 2.709                            | 54.5                           | 1.01 | -0.141              | 2.853                                 |
|            | 20               | 3.028          | 2.708                            | 54.6                           | 1.02 | -0.144              | 2.858                                 |
| <i>G</i> 4 | 0.022            | 2.285          | 2.409                            | 65.9                           | 1.05 | -0.238              | 2.672                                 |
|            | 0.05             | 2.351          | 2.409                            | 65.9                           | 1.04 | -0.236              | 2.668                                 |
|            | 0.1              | 2.422          | 2.409                            | 70.1                           | 1.02 | -0.241              | 2.670                                 |
|            | 0.2              | 2.480          | 2.410                            | 70.0                           | 1.00 | -0.254              | 2.678                                 |
|            | 0.5              | 2.597          | 2.416                            | 69.6                           | 0.96 | -0.303              | 2.722                                 |
|            | 1                | 2.683          | 2.423                            | 69.0                           | 0.94 | -0.293              | 2.712                                 |
|            | 2                | 2.791          | 2.426                            | 68.6                           | 0.94 | -0.370              | 2.790                                 |
|            | 5                | 2.955          | 2.435                            | 68.3                           | 1.00 | -0.212              | 2.666                                 |
|            | 10               | 3.078          | 2.446                            | 66.8                           | 1.12 | -0.123              | 2.599                                 |
|            | 20               | 3.188          | 2.460                            | 67.7                           | 1.23 | -0.106              | 2.602                                 |

Параметр *m*, характеризующий отличие энергии в показателе экспоненты в формулах (7), (8) от величины kT(в расчетах табл. 2 предполагалось, что kT соответствует комнатной температуре), почти равен единице для всех диодов, пока с увеличением тока не начинается нагрев. Это увеличение сказывается сильнее для зеленых диодов, для которых  $R_s = 27 \div 30$  Ом. Если принять, что кажущееся изменение *m* полностью обусловлено нагревом, то при постоянном токе  $20 \div 30$  мА температура активной области диода может достигать  $T \approx 390$  К. Значение  $m \approx 1$  может означать, что излучательные переходы идут из хвоста плотности состояний в зоне проводимости на локальные акцепторные уровни; это предположение необходимо проверить.

Полученное при подгонке значение квазиуровня Ферми для электронов  $\Delta F_n$  изменяется при малых токах в пределах от -0.11 до -0.36 эВ (от фиолетовых диодов к зеленым). Более глубокое положение уровня Ферми в зеленых диодах коррелирует с большими  $R_s$  и отсутствием туннельного излучения. Увеличение  $\Delta F_n$  на  $1 \div 2kT$  при увеличении тока соответствует двойной инжекции носителей в активную область.

Значения  $E_g^* = \hbar \omega_{\max} + \Delta$  следует сравнить с оценками величины  $E_g^*$  по формуле (4). Подгонка проводилась для спектров, нормированных к единице в максимуме. Зависимость интенсивности излучения от напряжения U и от параметров аппроксимации требует совместного анализа спектров и электрических свойств диодов. Эти пункты выходят за рамки настоящей статьи.

### 5. Заключение

1. Спектры люминесценции светодиодов на основе гетероструктур с квантовыми ямами  $In_xGa_{1-x}N/Al_yGa_{1-y}N/GaN$  с тонким активным слоем  $In_xGa_{1-x}N$  имеют максимумы в видимой области от фиолетовой до зеленой части спектра в зависимости от содержания In в активном слое. Спектр экспоненциально спадает и в коротковолновой, и в длинноволновой части.

2. В спектрах диодов проявляется структура, обусловленная отражением излучения от подложки и интерференцией в слое GaN. Это показывает возможности управления оптическим выводом излучения из диодов.

3. В спектрах голубых диодов при малых токах наблюдается туннельная излучательная рекомбинация, максимум в спектре которой сдвигается пропорционально напряжению на p-n-переходе.

4. Зависимость интенсивности излучения от тока и напряжения имеет три участка: при малых токах в голубых диодах существенна туннельная безызлучательная компонента тока; в промежуточной области токов и напряжений, зависящей от содержания In в активном слое ( $\hbar\omega_{\rm max} \le eU \le E_g^*$ ), квантовый выход излучения максимален, при больших токах существен нагрев диодов и квантовый выход падает.

5. Форма основной спектральной полосы в указанной области максимального квантового выхода хорошо описывается моделью рекомбинации в двумерной квантовой яме с учетом экспоненциального спада хвоста приведенной плотности состояний, обусловленного флуктуациями потенциала.

6. Параметр экспоненты, описывающей в модели спад спектров в длинноволновой области, имеет значения в интервале  $E_0 = 45 \div 70$  мэВ, что характеризует флуктуации потенциала, обусловленные различными причинами (шероховатости гетерограниц, неоднородности состава твердого раствора, кулоновский потенциал примесей и т.д.).

7. Коротковолновый спад спектров имеет энергию в показателе экспоненты, близкую к kT; ее изменение дает оценки нагрева активной области до 100°С при  $J \approx 20$  мА.

Авторы выражают глубокую благодарность д-ру Ш. Накамуре за присланные в МГУ образцы светодиодов, А.Е. Ковалеву за помощь в компьютеризации установки, С.С. Шумилову за помощь в программном обеспечении, А.Н. Ковалеву и Ф.И. Маняхину за электрические измерения.

#### Список литературы

- The first international symposium on gallium nitride and related materials. Abstracts of Mat. Res. Soc. 1995 Fall Meeting, Symp. AAA (Boston, 1995).
- [2] Abstracts of first European GaN workshop (Rigi, Switzerland, 1996).
- [3] S. Nakamura, M. Senoh, N. Iwasa, S. Hagahama. J. Appl. Phys., 34, Part 2, 797 (1995).
- [4] S. Nakamura, M. Senoh, N. Iwasa, S. Hagahama, T. Yamada, T. Mukai. Jpn. J. Appl. Phys., 34, Part 2, L1332 (1995).
- [5] А.Э. Юнович. Светотехника, вып. 5/6, 2 (1996).
- [6] K.G. Zolina, V.E. Kudryashov, A.N. Turkin, A.E. Yunovich, A. Nakamura. MIJ-NSR 1, Article 11 (1996), http://nsr.mij.mrs.org/1/11/.
- [7] S. Nakamura. Jap. J. Appl. Phys., 30, 1620 (1991).
- [8] А.Э. Юнович, А.Б. Ормонт. ЖЭТФ, 51, 1292 (1966).
- [9] А.Н. Ковалев, Ф.И. Маняхин, А.Э. Юнович. ФТП (в печати).
- [10] М. Херман. Полупроводниковые сверхрешетки (М., Мир, 1984).
- [11] Б.Р. Варданян, А.Э. Юнович. ФТП, 29, 1976 (1995).
- [12] R. Chingolani, W. Stolz, K. Ploog. Phys. Rev. B, 40, 2950 (1989).

Редактор В.В. Чалдышев

# Luminescence spectra of blue and green InGaN/AIGaN/GaN light–emitting diodes

K.G. Zolina, V.E. Kudryashov, A.N. Turkin, A.E. Yunovich

Moscow State Lomonosov University, Department of Physics, 119899 Moscow, Russia.

E-mail: yunovich@scon175.phys.msu.su