Усиление фотогальванического эффекта в двумерно-разупорядоченной среде

© М.В. Энтин

Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

(Получена 17 января 1997 г. Принята к печати 28 января 1997 г.)

Изучается фотогальванический эффект в двумерной слабо поглощающей среде Дыхне без центра инверсии. Показано, что в результате расходимости среднего квадрата модуля электрического поля происходит гигантское увеличение эффективного фотогальванического коэффициента.

В ряде работ последнего времени [1–6] было показано, что в случайно-неоднородных макроскопических средах, построенных из непоглощающих микроскопических частей, вследствие раскачки локальных плазмонов происходит усиление локальных электрических полей. В результате в такой среде расходятся средние от четных степеней модуля электрического поля. Эти величины являются определяющими для различных нелинейных откликов системы, что должно приводить к их усилению.

В настоящей заметке исследуется частный случай таких эффектов — фотогальванический эффект, возникающий в среде без центра инверсии. Мы будем предполагать, что высокочастотная поляризация \mathbf{D}^{ω} и локальная плотность стационарного тока \mathbf{j}^0 в среде может быть описана выражениями

$$D_i^{\omega} = \varepsilon^{\omega}(\mathbf{r}) E_i^{\omega}, \tag{1}$$

$$j_i^0 = \sigma^0(\mathbf{r})E_i^0 + \alpha_{ijk}E_j^{\omega}E_k^{-\omega} + \text{c.c.}, \qquad (2)$$

где $E_k^{-\omega} = (E_k^{\omega})^*$. 1-й член описывает высокочастотную часть поляризации среды на оптических частотах ω , 2-ой — низкочастотный ток фотогальванического эффекта. Обе величины удовлетворяют уравнениям Максвелла

$$\boldsymbol{\nabla} \mathbf{j}^0 = 0, \quad \boldsymbol{\nabla} \times \mathbf{E}^0 = 0, \tag{3}$$

$$\boldsymbol{\nabla} \mathbf{D}^{\omega} = 0 \quad \boldsymbol{\nabla} \times \mathbf{E}^{\omega} = 0, \tag{4}$$

Высокочастотная диэлектрическая проницаемость $\varepsilon^{\omega}(\mathbf{r})$ и проводимость на нулевой частоте $\sigma^{0}(\mathbf{r})$ предполагаются случайными функциями координат.

По аналогии с эффективной проводимостью можно ввести эффективный фотогальванический коэффициент *a_{i jk}* eff:

$$\langle j_k \rangle = \alpha_{ijk} \langle E_j^{\omega} (E_k^{\omega})^* \rangle = \alpha_{ijk, \text{ eff}} \langle E_j^{\omega} \rangle \langle (E_k^{\omega})^* \rangle.$$
 (5)

Усреднение в (5) проводится по пространству. Вообще говоря, в средний ток дает вклад не только непосредственно фотогальванический ток, но и статический отклик, связанный с перераспределением статического поля, описываемый первым членом в уравнении (2). Однако среднее от этого члена обращается в 0, если $\sigma^{0}(\mathbf{r})$ и $\varepsilon^{\omega}(\mathbf{r})$ (и, следовательно, $\mathbf{E}^{\omega}(\mathbf{r})$) являются независимыми случайными величинами, либо проводимость вообще не зависит от координат. В этом случае выражение для эффективной фотогальванической константы $\alpha_{ijk, \text{ eff}}$ определяется усреднением второго слагаемого в (1) и сводится, таким образом, к среднему $\langle E_i^{\omega}(E_k^{\omega})^* \rangle$.

Предположим, что электромагнитная волна падает на образец перпендикулярно его плоскости (x, y), а среда макроскопически изотропна и имеет двумерную неоднородность: $\varepsilon^{\omega}(\mathbf{r}) = \varepsilon^{\omega}(x, y)$. Тогда в плоскости отсутствуют выделенные направления и для компонент (i, j) = (x, y) тензор средних выражается через среднее от квадрата модуля поля: $\langle E_j^{\omega}(E_k^{\omega})^* \rangle = (1/2)\delta_{ij} \langle |\mathbf{E}^{\omega}|^2 \rangle$. В качестве модели высокочастотной диэлектрической проницаемости ε мы выберем среду Дыхне [7] — двухфазную статистически равноправную смесь сред с проницаемостями $\varepsilon_1 > 0$ и $\varepsilon_2 < 0$. В частности, можно считать, что диэлектрическая проницаемость исходных сред определяется свободными носителями в модели Друде–Лоренца

$$\varepsilon_{1,2} = 1 - \frac{\omega_{p(1,2)}^2}{\omega(\omega + i/\tau_{1,2})}$$
 (6)

и частота света ω лежит между близкими плазменными частотами $\omega_{p(1,2)}$. В этом пределе низкочастотная проводимость слабо зависит от координат, в то время как высокочастотная диэлектрическая проницаемость в разных точках имеет разные знаки. В области высоких частот $\omega \tau \gg 1$ и $\varepsilon_{1,2} = \varepsilon'_{1,2} + i\varepsilon''_{1,2} = 1 - \omega_{p(1,2)}^2 / \omega^2 + i\omega_{p(1,2)}^2 / (\omega^3 \tau)$, где $\varepsilon''_{1,2} \ll \varepsilon'_{1,2}$.

К рассматриваемым объектам относятся композиты полупроводник–полупроводник, металл–диэлектрик, металл–металл, состоящие из компонент с близкими свойствами в такой области частот, когда мнимая часть диэлектрической проницаемости меньше действительной, а знаки локальных значений $\varepsilon'_{1,2}$ различны. Это возможно в полупроводниках, во-первых, в окрестности плазменного резонанса на свободных носителях, вовторых, в области поляритонного резонанса и, в-третьих, в области частот, существенно превышающих край оптического поглощения.

В случае среды Дыхне может быть найдено точное выражение для среднего $\langle |\mathbf{E}^{\omega}|^2 \rangle$. Из закона сохранения энергии следует, что

$$\varepsilon_{\rm eff}^{\prime\prime} |\langle \mathbf{E}^{\omega} \rangle|^2 = \langle \varepsilon^{\prime\prime} |\mathbf{E}^{\omega}| \rangle. \tag{7}$$

Проводя преобразование Дыхне для индукци
и $D^{\omega} = \varepsilon \mathbf{E}^{\omega}$ и для поля в обеих средах

$$\mathbf{E}^{\omega'} = (1/\varepsilon_{\text{eff}})[\mathbf{n}\mathbf{D}^{\omega}], \quad x \to y.$$

$$\mathbf{D}^{\omega'} = \varepsilon_{\text{eff}}[\mathbf{n}\mathbf{E}^{\omega}], \qquad y \to -x,$$
(8)

сохраняющее вид уравнений Максвелла (4) для них

$$\boldsymbol{\nabla} \mathbf{D}^{\omega'} = \mathbf{0}, \quad \boldsymbol{\nabla} \times \mathbf{E}^{\omega'} = \mathbf{0} \tag{9}$$

и переводящее среду 1 в среду 2 и наоборот, а выражение для индукции $\mathbf{D}^{\omega} = \varepsilon \mathbf{E}^{\omega}$ в $\mathbf{D}^{\omega'} = (\varepsilon / \varepsilon_{\text{eff}}) \mathbf{E}^{\omega'}$, мы находим

$$|\varepsilon_1|\langle |\mathbf{E}^{\omega}|^2\rangle_1 = |\varepsilon_2|\langle |\mathbf{E}^{\omega}|^2\rangle_2.$$
(10)

Индексы 1 и 2 означают усреднение по 1-й и 2-й средам соответственно. Объединяя (7) и (10), получим

$$\langle |\mathbf{E}^{\omega}|^2 \rangle_{1,2} = \langle |\mathbf{E}^{\omega}|^2 \rangle \frac{2|\varepsilon_{2,1}|\mathrm{Im}(\sqrt{\varepsilon_1\varepsilon_2})}{\varepsilon_1''|\varepsilon_2| + \varepsilon_2''|\varepsilon_1|}, \qquad (11)$$

$$\langle |\mathbf{E}^{\omega}|^2 \rangle = \frac{(|\varepsilon_1| + |\varepsilon_2|) \mathrm{Im}(\sqrt{\varepsilon_1 \varepsilon_2})}{\varepsilon_1'' |\varepsilon_2| + \varepsilon_2'' |\varepsilon_1|} |\langle \mathbf{E}^{\omega} \rangle|^2.$$
(12)

В результате получаем для среднего фотогальванического тока

$$\langle j_i \rangle = 2 \mathrm{Im}(\sqrt{\varepsilon_2 \varepsilon_2}) \frac{\alpha_{i,1} |\varepsilon_2| + \alpha_{i,2} |\varepsilon_1|}{\varepsilon_1'' |\varepsilon_2| + \varepsilon_2'' |\varepsilon_1|} |\langle \mathbf{E}^{\omega} \rangle|^2, \qquad (13)$$

где $\alpha_{i,(1,2)} = (1/2)(\alpha_{ixx,(1,2)} + \alpha_{iyy,(1,2)}).$

В частном случае однаковых значений $\alpha_{1,2}$:

$$\langle j_i \rangle = \alpha_i \frac{(|\varepsilon_1| + |\varepsilon_2|) \mathrm{Im}(\sqrt{(\varepsilon_1 \varepsilon_2)})}{\varepsilon_1'' |\varepsilon_2| + \varepsilon_2'' |\varepsilon_1|} |\langle \mathbf{E}^{\omega} \rangle|^2$$

$$= \alpha_{\mathrm{eff},i} |\langle \mathbf{E}^{\omega} \rangle|^2.$$
(14)

Согласно (13), (14), в области слабого локального поглощения ($\varepsilon_{1,2}^{\prime\prime} \rightarrow 0$) знаменатель стремится к 0, в то время как числитель при $\varepsilon_1\varepsilon_2 < 0$ остается конечным, т.е. происходит усиление фотогальванического тензора. Именно при этих условиях в слабо поглощающей среде остается конечной мнимая часть эффективной диэлектрической проницаемости. Причина заключается в раскачке локального электрического поля. Величина квадрата модуля электрического поля определяется, согласно (7), балансом макроскопического поглощения и скорости локальных потерь, определяемых ε'' . В области прозрачности среды $\varepsilon_1\varepsilon_2 > 0$ эффективный фотогальванический тензор имеет такой же порядок, как и локальный.

В качестве примера рассмотрим нецентросимметричный кристалл GaAs, в котором симметрия разрешает объемный фотогальванический эффект. Будем предполагать, что объемный образец построен из чередующихся сильно и слабо легированных "столбиков" вдоль оси $0z = \langle 111 \rangle$, совпадающей с нормалью к поверхностям образца, со статистически одинаковыми свойствами. В

частности, это может быть распределение свойств типа "шахматной доски". Фотогальванический эффект будет усилен в области частот между плазменными частотами свободных электронов. В массивном образце GaAs фотогальванический тензор имеет только равные друг другу компоненты типа α_{123} . Используя ориентацию осей $0x = \langle 01\bar{1} \rangle$ и $0y = \langle \bar{2}11 \rangle$, находим, что $j_x = 0$, а $j_y = \sqrt{2/3} \alpha_{\rm eff} |\langle \mathbf{E}^{\omega} \rangle|^2$.

Обсудим полученные результаты. Во-первых, отметим, что использованное приближение малости флуктуаций статической проводимости не влияет на порядок величины ответа, пока эти флуктуации не превышают среднюю величину проводимости: $\ln(\sigma/\langle \sigma \rangle) \lesssim 1$. Это происходит потому, что усиление фотогальванического эффекта обусловлено не близостью к порогу перколяции, а возможностью поглощения поля в среде в отсутствие локальных потерь.

В пределе низкой частоты света усиление $\langle \mathbf{E} \rangle^2$ возникает в смеси металл-диэлектрик, где мало отношение статических проводимостей $h = \sigma_1/\sigma_2$, определяющее близость к порогу перколяции. В перколяционной системе средний квадрат поля расходится. Действительно, из работы [7] следует, что в системе с проводимостями σ_1 и σ_2

$$\langle \mathbf{E}^2 \rangle = \frac{\sigma_1 + \sigma_2}{\sqrt{\sigma_1 \sigma_2}} \langle \mathbf{E} \rangle^2.$$
 (15)

Если одна из величин $\sigma_{1,2}$ стремится к 0, а вторая ограничена, то $\langle \mathbf{E}^2 \rangle \to \infty$. Однако в отличие от высокочастотного случая, в этом пределе для нахождения среднего тока недостаточно усреднять его величину, а необходимо решать уравнение на статическое поле во 2-м порядке по переменному полю, и на основании (15) вывод о расходимости эффективного фотогальванического коэффициента сделать невозможно.

Автор благодарит Э.М.Баскина за плодотворные дискуссии.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (гранты 95-0204432 и 96-0219353) и Volkswagen–Stiftung.

Список литературы

- [1] F. Brouers, S. Blacher, A.K. Sarychev. In: *Fractal Reviews in the Natural and Applied Sciences* (1995) p. 237.
- [2] F. Brouers, S. Blacher, N. Henrioulle, A.K. Sarychev. In: *Electrical Transport and Optical Properties of Inhomogeneous Media* (M., Scientific Center for Applyed Problems in Electrodynamics, 1996) p. 46.
- [3] A.N. Lagarkov, K.N. Rosanov, A.K. Sarychev, N.A. Simonov; submitted to J. Phys. A (1996).
- [4] J.P. Clerc, G. Giraud, J.M. Laugier, J.M. Luck. Adv. Phys., 39, 191 (1990).
- [5] М.В. Энтин, Г.М. Энтин. Письма ЖЭТФ, 64, 427 (1996).
- [6] Э.М. Баскин, М.В. Энтин, А.К. Сарычев, А.А. Снарский, Physica A (в печати).
- [7] А.М. Дыхне. ЖЭТФ, 59, 110 (1970).

Редактор Т.А. Полянская

Enhansenment of photovoltaic effect in 2D disordered medium

M.V. Entin

Institute of Phisics of Semiconductors, Siberain Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia

Abstract The bulk photovoltaic effect in 2D weakly-absorbing Dykhne medium without an inversion center. It is shown that the divergency of mean square of electric field results in a giant enhancement of effective photovoltaic coefficient.

E-mail: entin@isp.nsc.ru (Entin)