Температурная зависимость электрических свойств поликристаллического кремния в темноте и при воздействии солнечного излучения

© К.М. Дощанов

Физико-технический институт Научно-производственного объединения "Физика–Солнце" Академии наук Узбекистана, 700084 Ташкент, Узбекистан

(Получена 8 июля 1996 г. Принята к печати 20 января 1997 г.)

Вычисляются электрическое сопротивление и эффективная подвижность носителей в поликристаллическом кремнии как функции температуры и уровня фотовозбуждения. Теоретические выводы согласуются с известными экспериментальными данными.

В последние годы в связи со все более широким применением поликристаллического кремния (поликремния) в солнечных элементах значительно возрос интерес исследователей к фотоэлектрическим свойствам этого материала (см. в [1,2] библиографию и подробный критический анализ работ, относящихся к этой проблеме). Недавно была предложена новая теория рекомбинации и переноса заряда в фотовозбужденных поликристаллических полупроводниках [3]. В данном сообщении мы хотим показать, что эта теория согласуется с экспериментальными результатами работы [4], где впервые исследована температурная зависимость электрических характеристик поликремния в темноте и при воздействии солнечного излучения.

Как и в [1-3], рассмотрим модельный поликристалл, состоящий из одинаковых кубических зерен, легированных мелкой донорной примесью с концентрацией N_d. На границах зерен имеются пограничные состояния (ПС) акцепторного типа, распределенные по энергии Е с поверхностной плотностью N(E). Захват электронов из объема зерен на ПС приводит к образованию межкристаллитных потенциальных барьеров, которые ограничивают перенос электронов из одного зерна в другое, а при фотовозбуждении поликристалла выполняют также функции рекомбинационных барьеров. Эффект рассеяния электронов непосредственно на самой границе зерен будем моделировать с использованием прямоугольного потенциального барьера высотой V_n и шириной δ (δ — "толщина" границы зерен) [2,3,5]. В [2] для достижения согласия теоретических зависимостей с экспериментальными данными работы [4] предполагалось, что V_n зависит от температуры образца. В рамках рассматриваемой теории это предположение является излишним.

В равновесном состоянии имеем

$$n_{s0} = \int_{E_v}^{E_c} N(E) f(E - F_s) dE,$$
 (1)

где n_{s0} — равновесная плотность электронов, захваченных на ПС; $f(E - F_s)$ — функция распределения Ферми-Дирака; $F_s = E_c - V_{s0} - kT \ln(N_c/N_d)$ — положение уровня Ферми на границах зерен; $V_{s0} = e^2 n_{s0}^2 / 8\varepsilon_0 \varepsilon N_d$ — равновесная высота межкристаллитных барьеров. Остальные обозначения стандартные.

При фотовозбуждении поликристалла захват дырок на ПС приводит к уменьшению плотности электронов n_s , локализованных на границах зерен. Зависимость n_s от уровня фотовозбуждения можно определить из уравнения [3]

$$N_d \left[\exp\left(-\frac{V_s}{kT}\right) - \exp\left(-\frac{V_{s0}}{kT}\right) \right] = G\tau_n, \qquad (2)$$

где левая часть определяет прирост концентрации электронов на вершинах межкристаллитных барьеров (на уровне протекания тока); $V_s = e^2 n_s^2 / 8\varepsilon_0 \varepsilon N_d$ — высота межкристаллитных барьеров при фотовозбуждении; G — темп фотогенерации электронно-дырочных пар; τ_n — время жизни неравновесных электронов на вершинах межкристаллитных барьеров. При выполнении условия $L_p \gg n_s/N_d$, где L_p — длина диффузии неосновных носителей в объеме зерен, имеем [3]

$$\tau_n = \frac{L_p^2}{v_n S_n (N_s - n_s)} \left[l + \frac{D_p}{v_p S_p n_s} \exp\left(-\frac{V_s}{kT}\right) \right]^{-1}, \quad (3)$$

где $v_n(v_p)$ — средняя тепловая скорость электронов (дырок); $S_n(S_p)$ — сечение захвата электрона (дырки) на ПС; N_s — полная плотность ПС; $l = L_p(a+1)/(a-1) + 4L_p^2/d$, $a = \exp(d/L_p)$, d размер зерен; D_p — коэффициент диффузии дырок.

Оценки показывают, что при $N_d > 10^{15} \,\mathrm{cm}^{-3}$ и уровнях фотовозбуждения $G \lesssim 1 \,\mathrm{sun} \,(1 \,\mathrm{sun} = 10^{20} \,\mathrm{cm}^{-3} \cdot \mathrm{c}^{-1} \,[1,2])$ вклад неосновных носителей в перенос заряда пренебрежимо мал. Согласно [3], удельное сопротивление поликристалла (ρ) определяется выражениями

$$\rho = \frac{1}{e\mu_n N_d} + \frac{1}{\sigma_c},\tag{4}$$

$$\sigma_c = \frac{e^2 v_n f^* d}{2kT} \left[2\bar{D}_n + S_n (N_s - n_s) \right] \\ \times \left[G\tau_n + N_d \exp\left(-\frac{V_{s0}}{kT}\right) \right].$$
(5)

Затем μ_n — подвижность электронов в объеме зерен; f^* — фактор моделирования [5,6]; \bar{D}_n — интегральная прозрачность границы зерен для электронов. Зависимость \bar{D}_n от температуры определяется выражением

$$\bar{D}_n = \frac{V_n}{kT} \int_0^1 \exp\left[-\alpha \sqrt{1-\xi} - \frac{V_n}{kT}\xi\right] d\xi - \exp\left(-\frac{V_n}{kT}\right),$$
(6)

где $\alpha = 4\pi \delta \sqrt{2m^* V_n}/h$, m^* — эффективная масса электрона, h — постоянная Планка. Первый член в (6) определяет туннельный ток электронов сквозь рассеивающий барьер границы зерен, второй — надбарьерный ток.

Для описания темновой электропроводности поликремния в области низких температур необходимо привлечь еще один механизм переноса заряда: прыжковый перенос электронов по межзеренным дефектам [2,6]. Выражение для удельного сопротивления, соответствующее этому механизму, имеет вид [7,8]

$$\rho_h = \rho_0 \sqrt{T} \exp(T_0/T)^{1/2}.$$
 (7)

В поликремнии экспериментальным данным удовлетворяют $\rho_0 = 10.15 \,\mathrm{Om} \cdot \mathrm{cm}/\mathrm{K}^{1/2}, T = 1400 \,\mathrm{K}$ [6].

Для эффектривного удельного сопротивления ρ^* и эффективной (холловской) подвижности μ_n^* носителей имеем

$$1/\rho^* = 1/\rho + 1/\rho_h,$$
 (8)

$$\mu^* = 1/e\rho^* N_d. \tag{9}$$

На рис. 1, 2 представлены результаты расчета $\rho^*(T)$ и $\mu^*(T)$ в поликремнии при следующих значениях параметров: d = 0.1 см, $N_d = 5 \cdot 10^{15}$ см⁻³, $\mu_n = 350(500$ K/T) см²/B · c [4]; $E_c - E_v = 1.12$ эВ, $D_p = 20$ см²/c, $L_p = 10^{-2}$ см, $v_n = v_p = 10^7 \sqrt{T/300}$ см/с [2]; $f^* = 0.05$, $\alpha = 5.1$;

Рис. 1. Температурная зависимость удельного сопротивления поликристаллического кремния: 1 — в темноте (G = 0), 2 — при воздействии солнечного излучения (G = 1 sun). Точки — экспериментальные данные работы [4].

Физика и техника полупроводников, 1997, том 31, № 8

Рис. 2. Температурная зависимость эффективной (холловской) подвижности электронов в поликристаллическом кремнии: I — в темноте (G = 0), 2 — при воздействии солнечного излучения (G = 1 sun). Точки — экспериментальные данные работы [4].

 $V_n = 0.06 \ \Im B, \ S_p = 10^{-13} \ \mathrm{cm}^2, \ S_n = 7.7 \cdot 10^{-15} \ \mathrm{cm}^2;$ параметры гауссова распределения плотности ПС: $N_s = 2.18 \cdot 10^{11} \ \mathrm{cm}^{-2}, \ E_s = E_v + 0.37 \ \Im B, \ \Delta E = 0.05 \ \Im B.$ Видно, что теоретические зависимости хорошо согласуются с экспериментальными данными.

Следует отметить, что предложенная в [2] интерпретация экспериментальных результатов работы [4] вызывает сомнение. Предполагаемая в [2] зависимость $V_n(T)$ получена не из физических соображений, а в результате сопоставления теоретической зависимости $\rho^*(T, G = 1 \text{ sun})$ с экспериментальными данными (другими словам, $V_n(T)$ используется в качестве подгоночной функции). Такой подход был бы оправдан, если бы одновременно было показано, что зависимость $\rho^*(T, G = 0)$, вычисленная при той же зависимости $V_n(T)$ и тех же значениях параметров, согласуется с экспериментальными данными. Однако в [2] темновая электропроводность не рассматривается. Ранее в [3] было указано и на другие некорректности теории [1,2]. Представляется, что в данном сообщении приведено наиболее убедительное объяснение экспериментальных результатов работы [4].

Список литературы

- D.P. Joshi, D.P. Blatt. IEEE Trans. Electron. Dev., 37, 237 (1990).
- [2] D.P. Bhatt, D.P. Joshi. J. Appl. Phys., 68, 2338 (1990).
- [3] К.М. Дощанов. ФТП, **30**, 558 (1996).
- [4] H. Paul Maruska, A.K. Ghosh, A. Rose, T. Feng. Appl. Phys. Lett., 36, 381 (1980).
- [5] N.C.C. Lu, L. Gergberg, C.Y. Lu, J.D. Meindl. IEEE Trans. Electron. Dev., 30, 137 (1983).

- [6] B.P. Tyagi, K. Sen. Phys. St. Sol. (a), 90, 709 (1985).
- [7] D.K. Paul, S.S. Mitra. Phys. Rev. Lett., 31, 1000 (1973).
- [8] P.C. Mathur, R.P. Sharma, R. Srivastrava, P. Saxena, R.K. Kotnala. J. Appl. Phys., 54, 3913 (1983).

Редактор Л.В. Шаронова

Temperature dependence of electrical properties of polycrystalline silicon in the dark and under solar illumination

K.M. Doshchanov

Physicotechnical Institute, Scientific-Production Union "Physics–Sun", Academy of Sciences of Uzbekistan, 700084 Tashkent, Uzbekistan

Abstract The electrical resistivity and the effective carrier mobility in polycrystalline silicon are computed as functions of temperature and illumination level. Theoretical predictions agree with known experimental data.