Высокотемпературный отжиг и ядерное легирование GaAs, облученного реакторными нейтронами

© В.Н. Брудный, Н.Г. Колин*, В.А. Новиков, А.И. Нойфех*, В.В. Пешев

Сибирский физико-технический институт им. В.Д.Кузнецова,

634050 Томск, Россия

* Филиал научно-исследовательского физико-химического института им. Л.Я.Карпова,

249020 Обнинск, Россия

(Получена 21 января 1996 г. Принята к печати 30 октября 1996 г.)

Исследованы электрофизические свойства и спектр глубоких ловушек в GaAs при термообработке, нейтронном облучении и последующем отжиге до $T_{ann} = 1100$ °C. Показано, что при $T_{ann} > 900$ °C в GaAs интенсивно формируются термоакцепторы, что приводит к ухудшению свойств ядерно-легированного материала. Проведены оценки коэффициента использования примеси при ядерном легировании GaAs в зависимости от T_{ann} и интегрального потока нейтронов. Приведены параметры глубоких ловушек в исследованном материале.

Для получения арсенида галлия *n*-типа проводимости с высокой степенью объемной однородности электрофизических характеристик в последние годы интенсивно развивается метод легирования путем ядерных превращений, включающий бомбардировку материала реакторными нейтронами и последующий высокотемпературный отжиг, облучение материала при повышенных температурах для устранения наведенных облучением радиационных дефектов (RD). Под действием тепловых нейтронов в GaAs протекают реакции

(30.2%) ⁶⁹Ga(
$$n, \gamma$$
)⁷⁰Ga \rightarrow ⁷⁰Ge $+ \beta^{-},$
(19.8%) ⁷¹Ga(n, γ)⁷²Ga \rightarrow ⁷²Ge $+ \beta^{-},$
(50%) ⁷⁵As(n, γ)⁷⁶As \rightarrow ⁷⁶Se $+ \beta^{-}$

с параметрами, соответственно,

$$\sigma = 1.68$$
 б, $T_{1/2} = 21$ мин, $\sigma = 4.7$ б, $T_{1/2} = 14.1$ ч, $\sigma = 4.3$ б, $T_{1/2} = 26.4$ ч,

что приводит к накоплению в решетке кристалла химических элементов (Ga, Se), проявляющих донорные свойства. Выполненные к настоящему времени исследования нейтронно-облученного GaAs выявили, что отжиг RD протекает в широком интервале температур от T_{irr} до T_m материала (T_{irr} , T_m — температуры облучения и плавления соответственно), что приводит к образованию термодефектов (TD), ухудшающих свойства ядернолегированного (ЯЛ) GaAs. Поэтому выбор оптимальной температуры отжига или облучения приобретает особое значение при ядерном легировании.

В настоящей работе исследованы спектры НЕСГУ (нестационарная емкостная спектроскопия глубоких уровней) ростовых дефектов (GD) и TD в исходном GaAs, закономерности их трансформации при термообработке до 1100 °C, а также спектры RD в облученном GaAs. Выполнены измерения электрофизических параметров GaAs, облученного реакторными потоками нейтронов до $2 \cdot 10^{19}$ см $^{-2}$ и отожженного в интервале температур (100-1100) °С. В качестве исходного материала использованы монокристаллы n- и p-GaAs, выращенные методом Чохральского: n-GaAs (проводимость $\sigma = 10^{-7} \,\mathrm{Om^{-1}\,cm^{-1}}$, образец 1), *p*-GaAs $(\sigma = 10 \text{ Om}^{-1} \text{ cm}^{-1})$, образец 2; $\sigma = 10^{-1} \text{ Om}^{-1} \text{ cm}^{-1}$, образец 3; $\sigma = 10^{-5} \,\mathrm{Om^{-1} \, cm^{-1}}$, образец 4) и *n*-GaAs $(\sigma = 10^{-2} \,\mathrm{Om^{-1} \, cm^{-1}},$ образец 5). Бомбардировка полным спектром нейтронов проводилась на реакторе типа ВВР-Ц (г. Обнинск) при температурах около 70 и 850°C, плотности потока тепловых нейтронов $D_{tn} = 10^{13} \div 5 \cdot 10^{13} \,\mathrm{cm}^{-2} \,\mathrm{c}^{-1}$ и кадмиевом числе 10. Изохронный отжиг материала проводился в течение 20 мин в вакууме (при T_{ann} < 500 °C) или при равновесных давлениях паров As (при T_{ann} = (600-1100) °C). Для устранения поверхностных эффектов образцы после облучения сошлифовывались с каждой стороны на 50 мкм, а после отжига — на 200 мкм.

Известно, что облучение GaAs нейтронами приводит к закреплению уровня Ферми вблизи $E_v + 0.6$ эВ [1] и увеличению удельного сопротивления материала до $\rho_{\text{max}} \simeq (3-5) \cdot 10^8$ Ом·см (при 300 K) вследствие захвата свободных носителей заряда на "глубокие" RD [2,3]. При длительном облучении наблюдается уменьшение удельного сопротивления (по сравнению с ρ_{max}), что связывается с переносом заряда по локальным состояниям запрещенной зоны, расположенным вблизи уровня Ферми (такие "переоблученные" образцы имеют *p*-тип проводимости).

Для устранения RD и активации химической примеси при ядерном легировании GaAs необходимо подвергать термической обработке. Параметры ЯЛ GaAs после высокотемпературной обработки при 900 и 1100 °C представлены в табл. 1. Изменение удельной электропроводности σ при изохронном отжиге облученных материалов показано на рис. 1. Для переоблученных образцов 1 и 2 (табл. 1) отмечается непрерывное изменение электрофизических параметров GaAs с основными стадиями отжига вблизи интервалов температур 200–300, 400–600, 700–900 и выше 1000 °C. При этом

Рис. 1. Изменение проводимости σ в ядерно-легированном GaAs при изохронном (20 мин) отжиге. Номера кривых соответствуют номерам образцов в табл. 1.

имеет место уменьшение проводимости σ до значений $(10^{-6}-10^{-8}) \text{ Om}^{-1} \text{ см}^{-1}$ при $T_{ann} < 500 \,^{\circ}\text{C}$, что обусловлено уменьшением вклада прыжковой проводимости в общий перенос заряда за счет уменьшения плотности локальных состояний в запрещенной зоне [2,3]. Аналогичные зависимости $\sigma(T_{ann})$ имели место и для переоблученных образцов 3 и 4 (табл. 1). При $T_{ann} > 500 \,^{\circ}\text{C}$ наблюдается возрастание σ , а при $T_{ann} > 550 \,^{\circ}\text{C}$ происходит p-n-конверсия типа проводимости образцов 1–4 за счет легирования примесями Se, Ge.

В кристаллах, облученных при T = 900 °C малыми потоками нейтронов (образец 5, табл. 1), основное восстановление проводимости σ протекает при $T_{\rm ann} = (100-200)$ °C, что соответствует отжигу точечных дефектов в GaAs и, предположительно, обусловлено накоплением таких дефектов за счет "самооблучения" кристаллов β^- -частицами от радиактивного распада ⁷²Ge и ⁷⁶As при хранении облученного материала [4].

Степень компенсации материала, рассчитанная из измерений подвижности свободных электронов при 77 и 300 К, лежит в пределах 0.3–0.4 при $T_{ann} = 900$ °C и 0.3–0.5 при $T_{ann} = 1100$ °C. Из данных табл. 1 следует, что при отжиге в интервале температур (900–1100) °C подвижность свободных электронов μ понижается в образцах, облученных малыми потоками нейтронов (образец 5). Для промежуточных уровней легирования (образцы 2–4)

$$\mu(T_{\text{ann}} = 900\,^{\circ}\text{C}) \simeq \mu(T_{\text{ann}} = 1100\,^{\circ}\text{C}),$$

а сильно облученном материале (образец 1) значение μ продолжает расти, оставаясь меньше соответствующих значений μ в образцах 2–5.

С целью выявления ловушек, ответственных за наблюдаемые изменения свойств GaAs, проводились измерения спектров НЕСГУ образцов, облученных быстрыми нейтронами, потоками $D_{fn} = (10^{14} - 10^{17}) \,\mathrm{cm}^{-2}$. Измерения выполнялись на барьерах Шоттки (Pd/n-GaAs) на материале, облученном нейтронами с энергией Е > 0.1 МэВ при плотности потока около $(4 \cdot 10^9 - 10^{12})$ см⁻² с⁻¹, $T_{\rm irr} < 70$ °С и кадмиевом экране (*d* = 1 мм). В качестве исходного материала для этих измерений использован слабо легированный "солнечный" *n*-GaAs ($n = 5 \cdot 10^{16}$ см⁻³, $\sigma = 30$ Ом⁻¹ см⁻¹, образец 6). При $D_{fn} \leq 10^{15}$ см⁻² облучались готовые структуры, а после облучения при $D_{fn} > 10^{15} \,\mathrm{cm}^{-2}$ барьеры Шоттки изготавливались на частично отожженных образцах, пригодных для измерения спектров НЕСГУ. Наиболее характерные спектры НЕСГУ исходных, термообработанных и облученных образцов представлены на рис. 2, а параметры выявленных ловушек — в табл. 2. Идентификация спектров проводилась путем сопоставления измеренных параметров исходных дефектов (ростовые GD), термоловушек (TD) и радиационных ловушек (RD), выявленных в исследованном материале, с характеристиками ряда ловушек в GaAs, известных из литературы [5–9].

Наблюдалось более 6 ловушек в исходном материале. Ловушка GD1 ($E_c - 0.12$ эВ) в исходном материале близка по энергетическому положению ростовому дефекту N_2 , который часто наблюдается в объемном GaAs по измерениям эффекта Холла и приписывается комплексу (собственный дефект решетки V_{Ga} или As_I)–(мелкий донор, возможно, Si), формируемому при охлаждении расплава [6]. Концентрация ловушек GD1 колеблется в пределах $N = (0.5-1) \cdot 10^{13}$ см⁻³.

Ловушка GD2 ($E_c - 0.21$ эВ, концентрация $N \simeq 5 \cdot 10^{13}$ см⁻³) по своим параметрам близка ростовому дефекту EL14, наблюдаемому в объемном GaAs. Иногда при измерениях эффекта Холла ростовые ловушки GD1, GD2 не "разрешаются" и сообщается о дефекте с уровнем вблизи $E_c - (0.13 \div 0.20)$ эВ, который, предположительно, контролирует электрические свойства специально не легированных кристаллов GaAs, выращенных по методу Чохральского или Бриджмена [8].

Ловушка GD3 (E_c – 0.30 эВ, концентрация $N \simeq (2-15) \cdot 10^{14}$ см⁻³) по своим параметрам

Таблица 1. Параметры ядерно-легированного GaAs после изохронного (t = 20 мин) отжига при 900 и 1100 °C; температура измерений $T_{\text{meas}} = 300$ K

No	<i>D</i> , 10 ¹⁵ см ⁻²	Температура облучения $T_{\rm irr}$, °С				
образца		900		1100		
		<i>n</i> , см ⁻³	μ , cm ² /B·c	<i>n</i> , см ⁻³	μ , cm ² /B·c	
1	200	$1.6\cdot 10^{18}$	1490	$1.7\cdot 10^{18}$	1840	
2	90	$9.2\cdot10^{17}$	2170	$1.0\cdot 10^{18}$	2030	
3	90	$9.5 \cdot 10^{17}$	2300	$9.2 \cdot 10^{17}$	2310	
4	90	$9.8 \cdot 10^{17}$	2230	$9.0 \cdot 10^{17}$	2280	
5	5	$8.0\cdot10^{16}$	4140	$4.8\cdot10^{16}$	3650	

Таблица 2.	Параметры	электронных	ловушек,	наблюдаемых	в <i>n</i> -GaAs до	(ростовые де	ефекты GD)), после облучения	нейтронами
(радиационн	ые дефекты	RD) и после т	гермообра	ботки (термо,	цефекты TD)				

Эксперимент			Литературные данные [5–9]				
Тип ловушки	Е, эВ	σ_n,cm^2	Тип ловушки	Е, эВ	σ_n, cm^2		
GD1	0.12	$1.2\cdot 10^{-15}$	N_2	0.15			
GD2	0.21	$1.4\cdot 10^{-15}$	EL14?	0.21	$5 \cdot 10^{-15}$		
GD3	0.30	$6.7\cdot 10^{-15}$	EL7(EL6?)	0.30	$7.2\cdot10^{-15}$		
GD4	0.40	$6\cdot 10^{-16}$	E11	0.43	$7.3 \cdot 10^{-16}$		
GD5	0.58	$3\cdot 10^{-14}$	EL3	0.57	$1.7\cdot 10^{-13}$		
GD6	0.75	$2.9\cdot10^{-14}$	EL2	0.75-0.82			
GD7	Малоинтен	сивный пик, детально) не исследован				
TD1	0.32	$3.3\cdot 10^{-14}$	Появляется при отжиге выше 900 °С				
TD2	0.44	$1.2\cdot 10^{-14}$	Появляется при отжиге выше 900 °С				
RD1	0.18	$3 \cdot 10^{-13}$	E2	0.14	$1.2\cdot 10^{-13}$		
RD2	0.35	$6.6\cdot10^{-15}$	E3	0.30	$6.2\cdot 10^{-15}$		
RD3			<i>U</i> -полоса				
P1*	0.35	10^{-14}	P1	0.38	$6.9 \cdot 10^{-15}$		
P2*	0.52	$3 \cdot 10^{-14}$	P2	0.50	$1.4\cdot10^{-15}$		
P3*	0.63	$2.9\cdot10^{-12}$	Р3	0.72	$1.4 \cdot 10^{-13}$		

Примечание. Центры P1*-P3* наблюдались после отжига облученных образцов.

близка центру EL7 (EL6?), в объемном GaAs. При термообработке материала при $T_{ann} > 600 \,^{\circ}\text{C}$ интенсивность соответствующего пика в спектрах НЕСГУ исходного GaAs уменьшается (рис. 3).

Ловушка GD4 ($E_c - 0.4$ эВ, а концентрация $N \simeq (0.5-5) \cdot 10^{14} \, \mathrm{cm}^{-3}$) наблюдается в некоторых исходных и отожженных образцах. Ее особенность — малые значения сечения захвата электронов, около $6 \cdot 10^{-16} \, \mathrm{cm}^2$. При нагреве до 900 °C данная ловушка практически исчезает.

Ловушка GD5 ($E_c - 0.58$ эВ) присутствует в исходных кристаллах в концентрациях (1–2)·10¹⁵ см⁻² и по своим параметрам близка центру EL3 [7]. Характер изменения ее концентрации при отжиге от 100 до 1100 °С представлен на рис. 3.

Основная по концентрации ловушка исходного материала GD8 ($N \simeq 10^{16} \,\mathrm{cm^{-3}}$), соответствующая известному центру EL2 (As_{Ga}-X) в GaAs, существенно не изменяла своей концентрации при отжиге вплоть до 1100 °С (рис. 3). Кроме того, в спектрах НЕСГУ исходных образцов наблюдались и другие малоинтересные пики, например пик GD7 на рис. 2, которые детально не исследовались.

Необходимо отметить корреляцию между отжигом ростовых ловушек (GD), образованием термодефектов (TD) при тепловой обработке и изменением электрофизических параметров исходного материала. Так, уменьшение концентрации центров GD3, GD5 приводит к росту концентрации свободных электронов при $T_{\rm ann} \leq 900$ °C, а генерация термодефектов TD1, TD2 при $T_{\rm ann} > 900$ °C — к ее уменьшению (рис. 3). Причем общее уменьшение концентрации ростовых ловушек электронов составляет около $3 \cdot 10^{15}$ см⁻³ при изменении концентрации свободных носителей до $2 \cdot 10^{16}$ см⁻³ при

 $T_{\rm ann} < 900\,^{\circ}{\rm C}$. Это указывает на то, что в данном температурном интервале исчезают и другие ростовые дефекты акцепторного типа, уровни которых расположены в нижней половине запрещенной зоны, ниже уровня дефекта EL2.

Рис. 2. Спектры НЕСГУ для образцов: I — исходного GaAs (образец 6), 2 — после отжига до 1000 °С, 3 — после облучения нейтронами потоком $D = 3 \cdot 10^{15}$ см⁻², 4 — после облучения потоком $D = 10^{16}$ см⁻² и отжига при 450 °С. Условия измерения спектров: $t_p = 20$ мкс, $\tau = 5 \cdot 10^{-3}$ с; для пика Е2 $\tau = 10^{-4}$ с. Обозначения типов дефектов такие же, как в табл. 2.

5 0 200 400 600 800 1000 7_{апп}, °С
 Рис. 3. Изменение концентрации свободных электронов (1) и ростовых ловушек (2-8) в исходном *n*-GaAs (образец 6) при изохронном (10 мин) отжиге. Типы дефектов: 2 — GD3, 3 — GD5, 4 — GD6, 5 — GD7, 6 — TD1, 7 — TD2, 8 — P1*. Кривая отжига центра P1* получена для образца, облученного потоком нейтронов D = 10¹⁶ см⁻².

В спектрах НЕСГУ облученных нейтронами образцов n-GaAs выявлен ряд глубоких электронных ловушек (RD1, RD2), которые можно приписать известным центрам Е2 и Е3, предположительно точечным дефектам в подрешетке As [8], и широкая полоса (RD3) в области интервала температур (230-320) К (так называемая U-полоса), предположительно связанная с наличием дефектов кластерного типа, поскольку она наблюдается только при нейтронном и ионном облучениях [9]. Особенность U-полосы — ее появление в спектрах НЕСГУ GaAs только при некоторых пороговых потоках нейтронов, отмеченное ранее авторами [10] при исследовании GaAs, полученного газофазной эпитаксией. При малых потоках нейтронов сначала растет интенсивность пика ЕL3 и только при потоках $D_{fn} > 3 \cdot 10^{15} \, {
m cm}^{-2}$ в спектрах НЕСГУ отмечено появление данной полосы.

При нагреве до 300 °С центры Е2, Е3 исчезают, а вместо пика Е3 в спектрах НЕСГУ наблюдается центр P1*, параметры которого близки к характеристикам центра P1 в облученном электронами и отожженном (до 300 °С) *n*-GaAs (табл. 2). При этом интенсивность *U*-полосы уменьшается (для $T_{ann} > 450$ °С), наблюдается ее смещение в область более высоких температур и "разрешение" *U*-полосы на два пика — P2* и P3* (табл. 2). Предположительно пики типа P* связаны со сложными дефектами, которые формируются при облучении и, возможно, частично при последующем отжиге. Отжигаются они интервале температур (500–600) °С (например, пик P1* на рис. 3). В образцах, облученных нейтронами,

потоками до 10^{17} см², "следы" RD в спектрах НЕСГУ для $T_{ann} > 700$ °C отсутствуют, однако неполное восстановление электрофизических свойств сильно облученного материала указывает на присутствие группы RD с высокой термостабильностью, не проявляющихся при измерениях НЕСГУ.

Проведенные исследования показывают, что отжиг ЯЛ GaAs протекает в широком температурном интервале в 3 этапа, что связано с исчезновением по крайней мере трех групп радиационных дефектов:

– отжиг ловушек *E*-типа при (100-300) °C — предположительно точечных дефектов, характерных для GaAs, облученного γ -квантами, электронами и ионами H⁺;

– отжиг центров Р1*–Р3* при (400–600) °С, который сопровождается восстановлением периода решетки и плотности нейтронно-облученного материала до значений, характерных для необлученного [11], и приписывается распаду дефектов кластерного типа;

– стадия отжига вблизи (700-900) °C, связанная с распадом неизвестной группы дефектов в сильно облученном GaAs.

Отжиг ростовых дефектов GD3, GD5 в GaAs практически заканчивается при температурах около 900 °C, что приводит к увеличению концентрации свободных электронов в исходном материале (рис. 3). Ланная температура отжига является критической, так как при $T_{\rm ann}$ > 900 °C в GaAs идет интенсивное формирование дефектов акцепторного типа, что приводит к уменьшению подвижности электронов, коэффициента использования примеси Кітр (см. далее) и увеличению степени компенсации материала (образец 5, табл. 1, рис. 3). Это накладывает ограничение на выбор максимальных температур термообработки при ядерном легировании GaAs. В то же время в образцах, облученных большими потоками нейтронов ($D = 2 \cdot 10^{19} \, \mathrm{cm}^{-2}$), значения nи μ при $T_{\text{ann}} = (900-1100)$ °С продолжают расти, что вызвано неполным отжигом RD даже при $T_{\rm ann} > 1100\,^{\circ}{\rm C}$ (табл. 1). Более низкое качество ЯЛ GaAs при высоких уровнях ядерного легирования и температурах термообработки обусловлено как неполным отжигом RD, так и распространением в материале термоакцепторов.

В заключение представим данные о коэффициенте использования примеси $K_{\rm imp} = \Delta n / N_{NTD}$ в ЯЛ GaAs при различных условиях легирования (интегральных потоках тепловых нейтронов и температурах последующего отжига), полученные на основе наших исследований и известных к настоящему времени литературных данных [4,12,13–16] (рис. 4). На рис. 4 $\Delta n = n - n_0$, где n_0, n — концентрации свободных электронов в исходном и ЯЛ GaAs соответственно, $N_{NTD} = (N_{Se} + N_{Ge})$ — концентрация примесей (⁷⁰Ge, 72 Ge, 76 Se) в ЯЛ GaAs. Величина N_{NTD} оценивалась из соотношения $N_{NTD} = K_{NTD} \cdot D_{tn}$, где коэффициент $N_{NTD} = 0.16 \, \mathrm{cm}^{-1}$. Эта величина получена в работе [3] экспериментально, путем измерения методом химического микроанализа концентрации примесей, введенных за счет ядерных превращений, и близка к теоретическим оценкам K_{NTD} в GaAs [15].

Рис. 4. Значения коэффициента использования примеси $K_{\rm imp} = \Delta n/N_{NTD}$ в ядерно-легированном GaAs для различных условий облучения и температур отжига. Сплошная кривая соответствует $\Delta n/N_{NTD} = 1$; 1-6 — литературные данные: 1 - [12], 2 - [4,13], 3 - [15], 4 - [14], 5, 6 - [16]; 7-10 — наши данные. Температура отжига, $T_{\rm ann}$, °C: 1 - 870; 2, 5, 9 - 900; 3, 8 - 800; 4 - 830; 6 - 750; 7 - 700; <math>10 - 1100.

Из рис. 4 следует, что при ядерном легировании GaAs температура отжига при любых потоках облучения не должна быть менее (800-900) °C для достижения величины $K_{imp} \approx 1$ и не должна превышать 900 °C для предотвращения эффекта генерации термоакцепторов в материале.

В опубликованных работах время изохронного отжига t_{ann} изменялось в широких пределах — от 3 мин [16] до 12.5 ч [15]. Как следует из данных рис. 4, малые значения времени отжига t_{ann} недостаточны для достижения $\Delta n \approx N_{NTD}$, а большие t_{ann} приводят к возникновению термоакцепторов в материале, поэтому обычно используются значения $t_{ann} \approx (20-30)$ мин.

В слабо облученных образцах ($N_{NTD} < 10^{17} \,\mathrm{cm}^{-3}$) при температурах отжига вблизи 900 °С иногда наблюдаются значения $K_{\mathrm{imp}} > 1$, что, по-видимому, связано с процессом "раскомпенсации" исходного материала, а при больших уровнях ядерного легирования ($N_{NTD} > 10^{18} \,\mathrm{cm}^{-3}$) величина K_{imp} всегда меньше 1, что обусловлено неполным отжигом RD, даже при длительных временах термообрабтки, и, возможно, эффектом самокомпенсации материала за счет амфотерности Ge при его больших концентрациях в арсениде галлия.

Работа выполнена при частичной поддержке грантами Государственного комитета высшего образования РФ "Университеты России" и "Фундаментальные исследования в области ядерной техники и физики пучков ионизирующих излучений".

Список литературы

- V.N. Brudnyi, S.N. Grinyev, V.E. Stepanov. Physica B, Cond. Matter, 212, 429 (1995).
- [2] R. Coates, E.W.J. Mitchell. Adv. Phys., 24, 594 (1975).
- [3] Н.Г. Колин, Л.В. Куликова, В.Б. Освенский, С.П. Соловьев, В.А. Харченко. ФТП, 18, 2187 (1984).
- [4] Н.Г. Колин, Л.В. Куликова, В.Б. Освенский. ФТП, 22, 1025 (1988).
- [5] А.В. Картавых, С.П. Гришина, М.Г. Мильвидский, Н.С. Рытова, И.В. Степанова, Е.С. Юрова. ФТП, **22**, 1004 (1988).
- [6] G.M. Martin, A. Mitonneau, A. Mircea. Electron. Lett., 13, 191 (1977).
- [7] D.C. Look, D.C. Walters, J.R. Meyer. Sol. St. Commun., 42. 745 (1982).
- [8] D. Pons, A. Mircea, A. Mitonneau, G.M. Martin. *Defects and Radiative Effects in Semiconductors*, ed. J.H. Albany (Bristol–London, 1978) [Inst. Phys. Conf. Ser. N 46, 352 (1979)].
- [9] G.M. Martin, E. Esteve, P. Langiade, S. Makram-Ebeid. J. Appl. Phys., 56, 2655 (1984).
- [10] В.Н. Брудный, Н.Г. Колин, А.И. Потапов. ФТП, 27, 260 (1993).
- [11] Н.Г. Колин, В.Т. Бублик, В.Б. Освенский, Н.И. Ярмолюк. Физика и химия обраб. материалов, 3, 28 (1987).
- [12] R. Rentzsch, K.J. Friedland, A.N. Ionov, M.N. Matveev, I.S. Shlimak, C. Gladun, H. Vinzeiberg. Phys. St. Sol. (a), 137, 691 (1986).
- [13] Л.И. Колесник, Н.Г. Колин, А.М. Лошинский, В.Б. Освенский, В.В. Токаревский, В.А. Харченко. ФТП, 19, 1211 (1985).
- [14] M.H. Young, A.T. Hunter, R. Baron, O.J. Marsh, H.V. Winston. *Neutron Transmutation Doping of Semiconductors Material*, ed. R.D. Larrabee (N.-Y.-London, Plenum Press, 1984) v. XIV, p. 1.
- [15] M.A. Vesaghi. Phys. Rev. B, 25, 5436 (1982).
- [16] P.D. Greene. Sol. St. Commun., 32, 325 (1979).

Редактор Т.А. Полянская

High-temperature annealign and transmutation doping in GaAs, irradiated with reactor neutrons

V.N. Brudnyi, N.G. Kolin*, V.A. Novikov, A.I. Noifekh*, V.V. Peshev

V.D. Kuznetsov Siberian Physical-Technical Institute, 634050 Tomsk, Russia

*L.Ya. Karpov Physical-Chemical Research Institute, Obninsk Branch, 249020 Obninsk, Russia

Abstract Electrophysical properties and the deep trap spectra in GaAs upon the heat treatment, neutron bombardment and the postirradiated annealing up to $T_{ann} = 1100$ °C have been investigated. It was revealed that at $T_{ann} > 900$ °C the acceptor–like traps are formed in GaAs that results in deterioration of properties of the neutron–transmutation doped material. The added electrically active donor concentration *vs* the neutron flux and the post– irradiated T_{ann} was estimated. The parameters of deep traps in the investigated materials are presented.

Fax: (3822)233034 (V.N. Brudnyi)

E-mail: root@eccspti.tomsk.su.(V.N. Brudnyi)