Влияние последовательной имплантации ионов Ag⁺(Cu⁺) и Xe⁺ на рекомбинационные свойства кристаллов Cd_xHg_{1-x}Te

© М.И. Ибрагимова, Н.С. Барышев, В.Ю. Петухов, И.Б. Хайбуллин

Казанский физико-технический институт Российской академии наук,

420029 Казань, Россия

(Получена 7 августа 1996 г. Принята к печати 25 октября 1996 г.)

Исследовано влияние двойной последовательной имплантации ионов Ag⁺ (Cu⁺) и Xe⁺ на рекомбинационные свойства кристаллов Cd_xHg_{1-x}Te (0.2 < $x \leq 0.3$). Показано, что после имплантации ионов одного химического элемента с последующим диффузионным термическим отжигом при температурах ниже 150 ÷ 200 K доминирует рекомбинация через локальные уровни, расположенные на 30 ± 5 мэВ ниже дна зоны проводимости. Последовательная двойная имплантация ионов Ag⁺ (Cu⁺) и Xe⁺ с последующим диффузионным термическим отжигом изменяет ход температурной зависимости времени жизни неравновесных носителей заряда. Установлено, что для кристаллов Cd_xHg_{1-x}Te c $x = 0.20 \div 0.25$ в температурном интервале 700 ÷ 200 K время жизни неравновесных носителей заряда мало ($\tau < 0.15$ мкс) и не зависит от температуры. Для кристаллов Cd_xHg_{1-x}Te c $x \simeq 0.3$ рекомбинация неравновесных носителей заряда происходит через уровни двух типов: в области температур 140 ÷ 200 K — через глубокие уровни $E_{t1} \simeq E_c - 51$ мэВ, а с понижением температуры (77 ÷ 140 K) — через более мелкие уровни $E_{t2} \simeq E_c - (16 \pm 2)$ мэВ.

1. Введение

Узкозонное полупроводниковое соелинение Cd_xHg_{1-x}Te является базовым материалом для изготовления приемников инфракрасного излучения. С научной точки зрения значительный интерес представляет исследование времени жизни неравновесных носителей заряда в этом материале, поскольку именно этот параметр опеределяет характеристики фотодетекторов. настоящему времени накоплен значительный К экспериментальный материал по изучению процессов рекомбинации и выяснению природы шокли-ридовских центров, возникающих в основном в кристаллах, подвергнутых специальному легированию (см. [1-5]). Весьма успешным оказалось применение ионной имплантации для формирования высококачественных различного *p*-*n*-переходов на подложках типа проводимости [6–9]. Более того, в работах [10,11] показана возможность управления электрическими параметрами *n*-Cd_xHg_{1-x}Te путем дозированного внедрения ионов I и III групп, что позволяет получить объемный материал как п-, так и р-типа проводимости с заданным уровнем концентрации носителей заряда. В результате исследования рекомбинационных свойств этих кристаллов с x = 0.204 ÷ 0.3 установлено, что в тех случаях, когда имеет место инверсия типа проводимости $n \to p$, при температурах ниже 150 ÷ 200 К доминирует рекомбинация через локальные уровни, расположенные на 25 ± 10 мэВ ниже дна зоны проводимости [12]. Возникающие при этом рекомбинационные центры связаны, по-видимому, образованием вакансионных комплексов c типа $(V_{\text{Hg}}V_{\text{Te}}).$ В то же время следует отметить, что имплантация ионов инертных газов, в частности Хе⁺, в Cd_rHg_{1-r}Te с последующим термическим отжигом не приводит к изменению электрических свойств,

тогда как время жизни неравновесных носителей заряда (при 77 К) уменьшается в несколько раз до 2 порядков [13]. Для того чтобы установить специфику ионной имплантации и последующего диффузионного отжига в узкозонных полупроводниках представляется исследовать влияние интересным двойной последовательной имплантации на электрические и фотоэлектрические свойства $Cd_xHg_{1-x}Te$. В данной исследованы рекомбинационные работе свойства кристаллов Cd_xHg_{1-x} Te ($x = 0.2 \div 0.3$), в которые последовательно имплантировались ионы I группы и ионы Хе⁺, с последующим диффузионным отжигом после каждого из облучений.

2. Эксперимент

В качестве исходного материала были использованы объемные монокристаллы твердого раствора Cd_rHg_{1-r}Te *п*-типа проводимости, выращенные различными методами, с содержанием теллурида кадмия $x = 0.2 \div 0.3$. Имплантация на свежетравленных образцах проводилась в 2 этапа: вначале внедрялись ионы Cu⁺ или Ag⁺ с энергией 40 или 30 кэВ сооответственно и дозами, лежащими в интервале $2.0 \cdot 10^{14} \div 2.0 \cdot 10^{15} \,\mathrm{cm}^{-2}$, а затем ионы Xe⁺ с энергией 30 кэВ и дозой 1.25 · 10¹⁶ или $2.5 \cdot 10^{16} \,\mathrm{cm}^{-2}$. В некоторых контрольных экспериментах имплантация осуществлялась в обратной последовательности. Во всех экспериментах по имплантации для предотвращения сильного нагрева образца плотность ионного тока *j* не превышала 0.7 мкА/см². После каждого облучения проводился диффузионный термический отжиг (ДТО) в запаянных кварцевых ампулах в насыщенных парах ртути при температуре 573 \pm 10 K в течение 10 ÷ 12 суток. Проведение такого отжига необходимо для диффузионного перераспределения внедренной примеси по всей толщине образца и отжига

№ образца	x	До имплантации				Условия имплантации		После имплантации + ДТО			
		тип прово- димости	$1/eR_H,$ 10^{15} cm ⁻³	$ R_H \sigma, \ 10^4 { m cm}^2/{ m B}\cdot{ m c}$	<i>τ</i> , мкс	ион	доза, 10 ¹⁵ см ⁻²	тип прово- димости	$1/eR_H,$ 10^{15} cm ⁻³	$ R_{H} \sigma, \ 10^4 ext{cm}^2/ ext{B}\cdot ext{c}$	<i>τ</i> , мкс
C1	0.23	п	-0.38	5.5	_	Ag^+	1.8	р	8.4	0.062	0.1
					0.1	Xe ⁺	25.0	р	8.5	0.060	0.1
C2	0.24	n	-4.64	6.1	—	Xe^+	12.5	n	-4.7	6.0	—
					_	Ag^+	1.25	р	2.5	0.013	0.14
C3	0.3	n	-1.23	5.4	-	Ag^+	0.62	р	2.1	0.029	0.29
					0.29	Xe^+	25.0	р	2.15	0.029	0.2
M1	0.25	п	-1.49	1.05	_	Cu^+	0.94	р	6.86	0.031	0.13
					0.13	Xe^+	12.5	р	6.85	0.035	0.13
M2	0.208	n	-2.1	1.07	_	Cu^+	1.9	р	8.8	0.043	0.1
					0.1	Xe^+	12.5	р	8.7	0.043	0.1
M3	0.3	n	-1.23	5.4	_	Cu^+	0.25	р	1.2	0.053	0.6
					0.6	Xe^+	25.0	р	1.3	0.053	0.25
К1	0.24	р	1.15	0.018	7.0	Xe ⁺	37.4	р	1.1	0.018	0.1

Таблица 1. Параметры образцов при 77 K до и после имплантации $Cu^+(Ag^+)$ и Xe⁺ с последующими ДТО

радиационных дефектов. Измерение электрических и фотоэлектрических параметров образцов производилось после каждой операции имплантации с последующим диффузионным отжигом.

Коэффициент Холла R_H и удельное сопротивление (проводимость σ) измерялись методом Ван-дер-Пау при 77 и 300 К в магнитных полях 500 и 15 000 Э. Для определения времени жизни неравновесных носителей заряда (ННЗ) τ в интервале температур 77 ÷ 300 К использовался метод релаксации фотопроводимости при импульсном возбуждении излучением диода на GaAs с длиной волны $\lambda = 0.91$ мкм.

3. Результаты и обсуждение

В табл. 1 представлены данные электрических и фотоэлектрических измерений при 77 К для кристаллов $Cd_xHg_{1-x}Te$ ($x = 0.2 \div 0.3$) до имплантации и после каждого этапа имплантации с последующим отжигом. Как видно из таблицы, ионная имплантация $Cd_xHg_{1-x}Te \leftarrow Cu^+$ (или Ag^+) приводит к инверсии типа проводимости $n \rightarrow p$ и увеличению фоточувствительности материала. Бомбардировка кристаллов $Cd_xHg_{1-x}Te$ только ионами Xe⁺ (см. данные для образцов K1 и C2) не влияет на электрические параметры, но приводит к сильному уменьшению времени жизни HH3.

Проведенные измерения температурных зависимостей времени жизни HH3 в Cd_xHg_{1-x} Те после двойной имплантации с последующим диффузионнным отжигом показали, что полученные результаты удобно разделить на две группы в зависимости от состава твердых растворов: $x = 0.20 \div 0.25$ и $x \simeq 0.3$. На рис. 1 на примере образца M1 (кривая *I*) показана типичная температурная зависимость времени жизни в кристаллах Cd_xHg_{1-x} Те с

 $x \leq 0.25$ после облучения ионами І группы и последующего ДТО. Ход температурной зависимости τ свидетельствует о том, что после имплантации в Cd_xHg_{1-x} Те ионов І группы в примесной области наблюдается рекомбинация через локальные уровни в запрещенной зоне. Расчет по одноуровневой модели Шокли-Рида показал, что рекомбинация в образце М1 осуществляется через уровень $E_{t1} = E_c - 26$ мэВ (см. данные табл. 2). На примере образца К1 (кривая 2) показана температурная зависимость времени жизни неравновесных носителей заряда для кристаллов Cd_xHg_{1-x} Те, подвергнутых имплантации ионами Xe⁺ в сочетании с последующим ДТО. При этом (см. [13]) следует отметить, что в исходном кристалле К1 температурный ход τ удовлетворительно объяснялся действием межзонных процес-

Рис. 1. Температурные зависимости времени жизни неравновесных носителей заряда для образцов $Cd_xHg_{1-x}Te \ c \ x \le 0.25$: I — образец M1, имплантация ионов Cu^+ ; ; 2 — образец K1, имплантация ионов Xe⁺; 3 — образец M1, имплантация последовательно ионов Cu⁺ и Xe⁺.

№ образца	Ион	x	Доза, 10 ¹⁵ см ⁻³	$1/eR_H$, 10^{15} cm ⁻³	$E_c - E_{t1}$, мэВ	$ au_{p1},10^{-6}{ m c}$	$ au_{n}, 10^{-6} \mathrm{c}$	$E_c - E_{t2}$, мэВ	$ au_{p2}, 10^{-6} { m c}$
M1	Cu^+	0.25	0.94	6.86	26	2.0	0.1		
M3	Cu^+	0.3	0.25	1.2	28	0.17	0.6		
	Xe^+		25.0	1.3	51	0.52	0.26	18	0.055
C3	Ag^+	0.3	0.62	2.1	35	0.48	0.29		
	Xe ⁺		25.0	2.15	51	1.26	0.21	14	0.064
К1	Xe^+	0.24	37.4	1.1	30	0.1			

Таблица 2. Параметры центров рекомбинации

Примечание. τ_n — время жизни неравновесных электронов; τ_{p1} , τ_{p2} — времена жизни неравновесных дырок относительно рекомбинации через уровни E_{t1} , E_{t2} .

сов, тогда как в результате имплантации ионов Хе+ зависимость $\tau(1/T)$ приобрела вид, характерный для рекомбинации ННЗ на центрах Шокли-Рида с энергией уровня $E_{t1} = E_c - 30$ мэВ (см. табл. 2). Кривая 3 на рис. 1 отражает ход температурной зависимости τ в образцах Cd_rHg_{1-r}Te, подвергнутых последовательной двойной имплантации ионами I группы и Xe⁺ в сочетании с последующими ДТО. Как видно из экспериментальных данных, после использованной нами последовательности двойной имплантации в Cd_xHg_{1-x}Te температурный ход $\tau(1/T)$ невозможно удовлетворительно описать на основе одноуровневой модели Шокли-Рида. При этом в широком температурном интервале (77 ÷ 200 K) время жизни HH3 не зависит от температуры и находится на низком уровне. Было установлено также, что последовательность двойного облучения Cd_xHg_{1-x} Te с $x \leq 0.25$ (ионы I группы, затем ионы Xe⁺ или наоборот) не влияет на величину τ : для образца M1 (ионы Cu⁺, затем ионы Xe^+) $\tau = 0.13$ мкс, для образца C2 (ионы Xe^+ , затем ионы Ag⁺) $\tau = 0.14$ мкс при $T = 77 \div 200$ K. Таким образом, в результате проведенных исследований установлено, что последовательное двойное облучение кристаллов $Cd_xHg_{1-x}Te$ (с $x \leq 0.25$) ионами I группы и Xe⁺ приводит к образованию мощного канала рекомбинации и стабилизации времени жизни ННЗ в области температур, соответствующих примесной проводимости.

На рис. 2 приведены температурные зависимости auдля двух образцов $Cd_xHg_{1-x}Te$ (x = 0.3), вначале облученных ионами Cu⁺ (образец М3, кривая 1) или Ag⁺ (образец С3, кривая 2), в которые затем имплантировались ионы Xe⁺ (кривые 3 и 4 соответственно). Ход температурной зависимости au для $Cd_xHg_{1-x}Te$, облученного ионами электрически активных примесей I группы, свидетельствует о том, что рекомбинация осуществляется через один локальный уровень в запрещенной зоне, так же как и для образцов с $x \leq 0.25$. В результате расчетов, представленных в табл. 2, получены значения $E_{t1} = E_c - 28$ мэВ и $E_{t1} = E_c - 35$ мэВ для $Cd_xHg_{1-x}Te$, облученного соответственно ионами Cu^+ и Ag⁺. Последующая имплантация ионов Xe⁺ в эти образцы приводит к тому, что температурные зависимости $\tau(1/T)$ становится невозможно описать рекомбинацией через один локальный шокли-ридовский центр. В качестве примера на рис. 2 пунктирными линиями показаны результаты расчетов для случая $E_{t1} = E_c - 51$ мэВ. В отличие от кристаллов с малыми значениями х для данной группы образцов наблюдается монотонное увеличение времени жизни HH3 с ростом температуры. В предположении двух уровней рекомбинации ННЗ проведено описание температурной зависимости τ в образце $Cd_xHg_{1-x}Te$ (x = 0.3), подвергнутом двойной последовательности имплантации. Результаты расчетов, приведенные в табл. 2, показывают, что в области 140 ÷ 200 К рекомбинация происходит через глубокий уровень $E_{t1} \simeq E_c - 51$ мэВ, а с понижением температуры (77÷140 К) преобладает рекомбинация через более мелкие уровни $E_{t2} = E_c - 18$ мэВ и $E_c - 14$ мэВ для образцов, первоначально облученных ионами Cu⁺ (образец M3) и Ад+ (образец СЗ) соответственно.

Полученные нами результаты по влиянию двойной последовательной имплантации на рекомбинационные свойства кристаллов Cd_xHg_{1-x} Те могут быть объяснены следующим образом. Как следует из данных работы [12], ионная имплантация кристаллов Cd_xHg_{1-x} Те в сочетании с длительным ДТО приводит к формированию радиационных дефектов, входящих в состав комплексов, по всей видимости, типа ($V_{Hg}V_{Te}$). При этом установлено,

Рис. 2. Температурные зависимости времени жизни неравновесных носителей заряда для образцов Cd_xHg_{1-x} Te с x = 0.3: l — образец M3, имплантация ионов Cu^+ ; 2 — образец C3, имплантация ионов Ag^+ ; 3 — образец M3, имплантация последовательно ионов Cu^+ и Xe^+ ; 4 — образец C3, имплантация последовательно ионов Ag^+ и Xe^+ .

что зарядовое состояние таких комплексов зависит от х: нейтральное для $x \simeq 0.3$ и положительное (+1) для $x \leq 0.25$. Наблюдаемые нами различия в температурных зависимостях времени жизни ННЗ в кристаллах Cd_xHg_{1-x}Te, подвергнутых последовательной двойной имплантации, в зависимости от x, во всей видимости, связаны с характером исходно существовавших комплексов. Более того, в твердых растворах Cd_rHg_{1-r}Te с малыми значениями x (x < 0.25) комплексы образуются легче и концентрация их выше, чем в кристаллах с большими значениями х, при одинаковых дозах имплантации. Таким образом, можно предположить, что в Cd_rHg_{1-r}Te после последовательной двойной имплантации происходит формирование новых комплексов на базе исходно существующих, причем в образцах с $x \leq 0.25$, т.е. в кристаллах с более узкой запрещенной зоной (при 77 К $E_g = 0.197$ эВ [14]), плотность их высока и они дают основной вклад в рекомбинационные процессы, что и приводит к стабилизации времени жизни ННЗ с малым значениям τ в широком температурном интервале.

Список литературы

- [1] R.G. Pratt, J. Hewett, P. Capper, C.L. Jones, M.J. Quelch. J. Appl. Phys., **54**, 5152(1983).
- [2] R.G. Pratt, J. Hewett, P. Capper, C.L. Jones, N. Judd. J. Appl. Phys., 60, 2377 (1986).
- [3] D.E. Lacklison, P. Capper. Semicond. Sci. Technol., 2, 33 (1987).
- [4] P.S. Wijewarnasuriya, M.D. Lange, S. Sivanathan, J.P. Faurie. J. Appl. Phys., 75, 1005 (1994).
- [5] Н.С. Барышев, Б.Л. Гельмонт, М.И. Ибрагимова. ФТП, 24, 209 (1990).
- [6] G.L. Destefanis. J. Vac. Sci. Technol. A, 3, 171 (1985).
- [7] L.O. Bubulac, W.E. Tennant, D.S. Lo, D.D. Edwall, J.C. Robinson, J.C. Chen, G. Bostrup. J. Vac. Sci. Technol. A, 5, 3166 (1987).
- [8] J. Baars, H. Seelewind, Ch. Fritzshe, U. Kaiser, J. Ziegler. J. Cryst. Growth, 86, 762 (1988).
- [9] L.O. Bubulac, D.D. Edwall, D. McConnell, R.E. DeWames, E.R. Blazejewski, E.R. Gertner. Semicond. Sci. Technol., 5, N 3S, S45 (1990).
- [10] М.И. Ибрагимова, Н.С. Барышев, И.Б. Хайбуллин, Ф.И. Ахмедова, А.П. Фадеева. ФТП, 23, 1249 (1989).
- [11] Ф.И. Ахмедова, Н.С. Барышев, М.И. Ибрагимова, И.Б. Хайбуллин. ФТП, 21, 575 (1987).
- [12] М.И. Ибрагимова, Н.С. Барышев, В.А. Жихарев, И.Б. Хайбуллин. ФТП, 29, 1775 (1995).
- [13] Н.С. Барышев, М.И. Ибрагимова, И.Б. Хайбуллин. ФТП, 24, 363 (1990).
- [14] W. Dexter. Phys. Rev., 181, 1181 (1969).

```
Редактор Л.В. Шаронова
```

The influence of subsequent implantation of $Ag^+(Cu^+)$ and Xe^+ ions on recombination characteristics of $Cd_xHg_{1-x}Te$

M.I. Ibragimova, N.S. Baryshev, V.Yu. Petukhov, I.B. Khaibullin

Kazan Physical-Technical Institute, Russian Academy of Sciences, 420029 Kazan, Russia

Abstract In our research the influence of a double subsequent implantation of $Ag^+(Cu^+)$ and Xe^+ ions on recombination characteristics of $Cd_xHg_{1-x}Te$ was studied. It has been shown that after an implantation of ions of one chemical element with consequent diffusional thermal annealing at temperatures lower than $150 \div 200$ K, there dominated a recombination through levels 30 ± 5 meV below the conduction band edge. After a subsequent double implantation of Ag⁺ (Cu⁺) and Xe⁺ ions and annealing, the plot of carrier minority lifetime vs temperature changed. It was established that for $Cd_xHg_{1-x}Te$ with $x \leq 0.25$ the minority lifetime was small ($< 0.15 \,\mu s$) and constant in the temperature renge 77 ÷ 200 K. For $Cd_xHg_{1-x}Te$ with $x \simeq 0.3$ a recombination occured through two tipe levels: at temperatures $140 \div 200 \text{ K}$ — through a deep levels $E_{t1} \simeq E_c - 51 \text{ meV}$ and at lower temperatures $77 \div 140$ K — through more shallow levels $E_{t2} \simeq E_c - (16 \pm 2)$ meV.

Fax: (8432) 765075 E-mail: petukhov@ksc.iasnet.ru