Эффект Френкеля–Пула для примеси бора в кремнии в сильных греющих электрических полях

© А.М. Козлов, В.В. Рыльков

Институт радиотехники и электроники Российской академии наук, 141120 Фрязино, Россия

(Получена 23 мая 1996 г. Принята к печати 25 октября 1996 г.)

Развит метод исследования эффекта Френкеля–Пула, основанный на измерении термостимулированной проводимости слабо компенсированного полупроводника, легированного глубокой примесью, в котором также содержится более мелкая, чем основная, сопутствующая примесь. Приводятся результаты исследования термоситмулированной проводимости образцов Si:Ga с концентрацией галлия $N_A = (2-3) \cdot 10^{18} \text{ см}^{-3}$ и низким содержанием сопутствующей примеси ($\leq 10^{13} \text{ см}^{-3}$). Проводимость измерялась после примесного фотовозбуждения образцов при нагреве их со скоростью $\beta = 0.6 \text{ K/c}$ в диапазоне температур $T = 4.2 \div 24 \text{ K}$ в электрических полях $E = 200 \div 1000 \text{ B/cm}$. Показано, что максимум на кривых термостимулированной проводимости обусловлен термостимулированным опустошением сопутствующей примеси бора и сдвигается в область более низких значений T с увеличением поля E. По сдвигу максимума найденное уменьшение энергии ионизации примеси В в электрическом поле, которое оказывается несколько слабее, чем следует из модели Френкеля–Пула для однозарядных кулоновских центров.

Известно, что исследование эффекта Френкеля-Пула в легированных полупроводниках затруднено из-за разогрева носителей заряда в электрическом поле и ударной ионизации примесей. Поэтому этот эффект обычно изучается по изменению электропроводности в импульсных электрических полях, и, если при ионизации глубоких примесей он наблюдался неоднократно [1-4], то в отношении мелких примесей — лишь недавно [5]. Причем измерения в работе [5] проводились в условиях сильного флуктуационного потенциала, когда разогрев носителей заряда ослаблен, а изменение энергии ионизации мелкой примеси определяется не только внешним электрическим полем, но и случайными полями заряженных центров. В настоящей работе демонстрируется возможность исследования эффекта Френкеля-Пула из измерений термостимулированной проводимости (ТСП) слабо компенсированного полупроводника, легированного глубокой примесью [6], в котором также содержится мелкая, сопутствующая примесь (СП). Суть подхода заключается в том, что поле примесного пробоя определяется параметрами легирующей примеси, тогда как ТСП в области допробойных полей чувствительна только к присутствию СП. Покажем, что при определенных условиях ударной ионизацией СП вплоть до полей примесного пробоя можно пренебречь. При этом изменение положения максимума кривой ТСП по температуре с ростом электрического поля целиком определяется эффектом Френкеля-Пула.

Рассмотрим для определенности ТСП на примере слабо компенсированного полупроводника *p*-типа с уровнем легирования N_A и концентрацией мелкой акцепторной примеси $N_a \ll N_A$. Как и в предыдущей работе [6], будем, кроме того, полагать, что концентрация сопутствующей примеси N_a заведомо меньше концентрации компенсирующих доноров N_d . В этом случае при достаточно низкой температуре, когда темновая концентрация дырок $p_d \ll N_d$, вся СП, а также часть легирующей приме-

си будут ионизованы, причем суммарная концентрация ионизованных центров $N_a^- + N_A^- = N_d$. При фотовозбуждении полупроводника из области примесного поглощения заполнение СП в греющих электрических полях будет контролироваться процессами захвата фотодырок на ионизованные атомы СП и ударной ионизацией нейтральных центров СП. Из равенства скоростей этих процессов

$$\alpha_a^- N_a^- p = \alpha_{aI} N_{aS}^0 p \tag{1}$$

находим концентрацию заполненных атомов СП в стационарных условиях

$$N_{aS}^{0} = N_{a} / (1 + \alpha_{aI} / \alpha_{a}^{-}).$$
⁽²⁾

Здесь α_a^- — коэффициент захвата дырок на ионизованные центры СП, p — концентрация дырок при фотовозбуждении, α_{al} — коэффициент ударной ионизации нейтральных атомов СП.

Из соотношений (1) и (2) видно, что в греющих электрических полях степень заполнения СП не зависит от уровня фотовозбуждения. Из сопоставления темпов ударной и оптической ионизации нейтральных центров СП несложно также показать, что такое поведение реализуется, как только α_{al} сравнивается с величиной $\alpha_a^- K$, где K — степень компенсации. Другими словами, в слабо компенсированном полупроводнике ($K \ll 1$) выражение (2) оказывается справедливым в полях, при которых еще α_{al} заметно меньше α_a^- .

После выключения фотовозбуждения релаксация проводимости образца, обусловленная термической и ударной ионизацией нейтральных центров СП, описывается уравнениями кинетики:

$$dp/dt = -p(\alpha_A^- N_A^- + \alpha_a^- N_a^-) + \gamma_T N_a^0$$
$$+ p\alpha_{aI} N_a^0 + p\alpha_{AI} N_A^0, \qquad (3)$$

$$dN_a^0 dt = p\alpha_a^- N_a^- - \gamma_T N_a^0 - p\alpha_{aI} N_a^0, \qquad (4)$$

где α_A^- — коэффициент захвата дырок на ионизованные атомы легирующей примеси,

$$\gamma_T = N_v \alpha_a^- \exp(-\varepsilon_a/kT)$$

— коэффициент термической генерации, N_{ν} — эффективная плотность состояний в валентной зоне, k — постоянная Больцмана, α_{AI} — коэффициент ударной ионизации нейтральных центров легирующей примеси, ε_a — энергия активации СП.

В полях, меньших поля примесного пробоя полупроводника, справедливо соотношение $\alpha_A^- N_A^- \gg \alpha_{AI} N_A^0$ [7]. Кроме того, при $N_a \ll N_d$ можно пренебречь захватом дырок на уровни СП:

$$\alpha_A^- N_A^- \gg \alpha_a^- N_a^-$$

Здесь учтено, что при низких температурах коэффициенты захвата носителей заряда для притягивающих центров одинакового типа близки [8], а также соотношение

$$N_A^- \simeq N_d \gg N_a^-$$
.

В этих условиях выражения (3) и (4) упрощаются и при нагреве образца по линейному закону $T = T_0 + \beta t$ (T_0 — начальная температура образца, при которой осуществлялось фотовозбуждение, β — скорость нагрева) получаем

$$p(T) = -\tau \beta dN_a^0 / dT, \qquad (5)$$

$$dN_{a}^{0}/dT = -\beta^{-1}\gamma_{T}N_{a}^{0}/(1 - \alpha_{al}N_{a}^{0}\tau), \qquad (6)$$

где $\tau \sim 1/(N_d \alpha_A^-)$ — время жизни дырок. Из (6) следует, что эффектами ударной ионизации можно пренебречь, если $\alpha_{al} N_a^0 \tau \ll 1$. С учетом (2) максимальное значение этой величины составляет

$$(\alpha_{aI}N_a^0\tau)_{\max} = \alpha_{aI}N_{aS}^0\tau < (N_a/N_d)(\alpha_a^-/\alpha_A^-),$$

т.е. при $N_a \ll N_d$ влияние ударной ионизации на ТСП пренебрежимо мало. При этом p(T) имеет форму кривой с максимумом при температуре T_m , определяемой известным соотношением [9]:

$$\frac{kT_m^2 \alpha_a^{-} N_v}{\beta \varepsilon_a} = \exp\left(\frac{\varepsilon_a}{kT_m}\right). \tag{7}$$

Таким образом, при $N_a \ll N_d$ изменение положения максимума кривой ТСП в электрическом поле *E* непосредственно определяется зависимостью ε_a от *E*.

Эксперименты по исследованию эффекта Френкеля– Пула выполнены на образцах Si:Ga, полученных методом зонной плавки, с уровнем легирования $(2-3) \cdot 10^{16}$ см⁻³ и концентрацией остаточных примесей менее или порядка 10^{13} см⁻³. Предыдущие исследования ТСП этих образцов [6] показали, что в них возможно присутствие в небольших количествах ($\simeq 10^{12}$ см⁻³) СП бора. Кроме того, из анализа нарастающей и спадающей ветвей кривой ТСП были выявлены образцы с линейной кинетикой рекомбинации, отвечающей случаю $N_a \ll N_d$ [6].

Проводимость образцов измерялась после их фотовозбуждения излучением полупроводникового ИК лазера ($\lambda = 5$ мкм) при нагреве со скоростью $\beta = 0.6$ К/с в области температур $T = 4.2 \div 2.4$ К. Детали методики измерений описаны в [6]. Предельные электрические поля в экспериментах ($\simeq 1000$ В/см) не превышали поля примесного пробоя ($\simeq 1500$ В/см). Отметим, что примесный пробой образцов Si:В с близким уровнем легирования и степенью компенсации происходит в полях $E \leq 300$ В/см [10], т.е. при существенно меньших средних энергиях дырок, если учесть, что подвижности дырок в Si:В и Si:Ga при одинаковых уровнях легирования практически не отличаются [11,12].

Типичные кривые термостимулированного тока для образца с концентрацией Ga $N_A \simeq 2.6 \cdot 10^{16} \,\mathrm{cm^{-3}}$ и бора $N_a \simeq 1.5 \cdot 10^{12} \,\mathrm{cm^{-3}}$ (методика определения N_a на примере этого образца изложена в [6]) в различных электрических полях приведены на рис. 1. Наблюдаемый сдвиг кривых в сторону низких температур свидетельствует, согласно (7), об уменьшении энергии активации примеси бора с ростом электрического поля. Видно также, что максимальное значение температурного сдвига $\Delta T_m = 0.9 \,\mathrm{K}$ ($E = 1080 \,\mathrm{B/cM}$) мало по сравнению с величиной $T_m = 18.07 \,\mathrm{K}$ при $E = 270 \,\mathrm{B/cm}$. Поэтому для получения зависимости $\varepsilon_a(E)$ разумно воспользоваться разложением (7) по малому параметру $\Delta T_m/T_m$.

$$\varepsilon_{a} = \varepsilon_{a0} - \varepsilon_{a0} \frac{2T_{m0}k + \varepsilon_{a0}}{T_{m0}k + \varepsilon_{a0}} \left(\frac{T_{m0} - T_{m}}{T_{m0}} + \frac{T_{m0}k}{\varepsilon_{a0}} \ln \frac{\alpha_{a0}^{-}}{\alpha_{a}^{-}} \right).$$
(8)

Индекс "0" в (8) отвечает значениям ε_a , T_m и α_a^- в начальном поле $E_0 = 270$ В/см. Величину ε_{a0} можно определить по полуширине кривой ТСП и затем, используя (7), найти α_{a0}^- [6]. При E = 270 В/см для данного

образца $\varepsilon_{a0} = 41.33$ мэВ, а $\alpha_{a0}^- = 1.74 \cdot 10^{16}$ см⁻³ с⁻¹ [6]. В работе [6] было также показано, что изменение величины α_a^- , определяющей коэффициент термической генерации дырок с нейтральных центров СП [см. (3), (4)], обусловлено делокализацией в электрическом поле высоковозбужденных примесных состояний. При этом, согласно [12],

$$\alpha_{a0}^{-}/\alpha_{a}^{-} = (E/E_0)^{1/2}.$$
 (9)

Результаты расчетов ε_a в зависимости от величины $(E)^{1/2}$ с использованием (8) и (9) приведены на рис. 2 (обозначены точками на кривой *1*). Подгонка по методу наименьших квадратов к линейной зависимости дает

$$\varepsilon_a(E) = 44.42 - 0.186(E)^{1/2},$$
 (10)

где ε_a — в мэВ, E — в В/см. Согласно (10), энергия активации в нулевом поле $\varepsilon_a = 44.42$ мэВ, что очень хорошо согласуется с данными оптических измерений $\varepsilon_a = 44.39$ мэВ [14] и свидетельствует о корректности развитой методики. С другой стороны, наклон экспериментальной зависимости заметно меньше (на 15%) наклона теоретической зависимости (изображена сплошной линией на рис. 2), вытекающей из классической модели Френкеля–Пула для однозарядных кулоновских центров [12]:

$$\varepsilon_a(E) = \varepsilon_a(0) - 2(e^3 E/\varkappa)^{1/2}, \tag{11}$$

где \varkappa — диэлектрическая проницаемость. Для Si $\varkappa = 11.7$, что дает

$$\Delta \varepsilon = 2(e^{3}E/\varkappa)^{1/2} = 0.222E^{1/2}$$

Заметим, что наблюдаемое отличие нельзя объяснить эффектами ударной ионизации бора, поскольку их влияние сводилось бы к более сильному сдвигу кривых ТСП

Рис. 2. Экспериментальная (1) и расчетные (2, 3) зависимости энергии активации ε_a от $E^{1/2}$, полученные с использованием формул: 2 — (11), 3 — (7) из работы [13]. Штриховая линия — зависимость ε_a от $E^{1/2}$, найденная подгонкой к экспериментальной по методу наименьших квадратов.

Физика и техника полупроводников, 1997, том 31, № 7

Рис. 3. Расчетные кривые термостимулированной проводимости в электрическом поле E = 1080 В/см при значениях ε_a : I — экспериментальном, 2 — теоретическом.

по температуре и, следовательно, к наблюдению более резкого уменьшения ε_a с ростом *E*.

На рис. 3 приведены также расчетные кривые ТСП для экспериментального и теоретического значений ε_a в поле E = 1080 В/см. Сдвиг максимумов кривых по температуре составляет порядка 0.5 К и существенно превосходит в нашем случае чувствительность используемого термометра ТСУ-1 к относительному изменению температуры ($\Delta T \simeq 0.05$ K).

Вероятной причиной ослабления зависимости $\varepsilon_a(E)$ является неучет в одномерной модели Френкеля–Пула угловых эффектов [13]. Уменьшение ε_a с ростом Eв трехмерном случае можно оценить по увеличению скорости термоэмиссии дырок γ_T в электрическом поле, воспользовавшись, например, выражением (7) для γ_T из работы [13]:

$$\Delta \varepsilon \simeq kT_m \ln(\gamma_T / \gamma_{T0}),$$

где γ_{T0} — скорость термоэмиссии в нулевом электрическом поле. Полученная таким образом зависимость ε_a от $E^{1/2}$ представлена на рис. 2 (кривая 3). Интересно отметить, что в этом случае наклон кривой возрастает с увеличением E, однако в сильных полях он изменяется слабо и практически совпадает с наклоном экспериментальной зависимости. В интервале полей $E = 900 \div 1600$ В/см наклон кривой 3 изменяется в пределах 0.181÷0.187 мэВ(В/см)^{-1/2}, тогда как в эксперименте он составляет 0.186 мэВ(В/см)^{-1/2}.

Авторы выражают благодарность Б.А. Аронзону и А.С. Веденееву за дискуссии и замечания.

Работа выполнена при поддержке фонда Международной ассоциации INTAS (грант 93-1403) и Российского фонда фундаментальных исследований (грант 96-02-18429-а).

Список литературы

- T.E. Hartman, J.C. Blair, R. Bauer. J. Appl. Phys., 37, 2468 (1966).
- [2] А.Г. Дмитриев, Д.Н. Наследов, Б.В. Царенков. ФТП, 6, 345 (1972).
- [3] G.A.N. Connel, D.L. Camphausen, W. Paul. Phil. Mag., 26, 541 (1972).
- [4] S.D. Ganichev, J. Diener, L.M. Yassievich, W. Preitl. Europhys. Lett., 29, 315 (1995).
- [5] Н.Г. Жданов, М.С. Каган, Е.Г. Ландсберг, Л.В. Левкин, В.В. Петрищев. Письма ЖЭТФ, **62**, 108 (1995).
- [6] Ж. Леотин, В.В. Рыльков. ФТП, 30, 9 (1996).
- [7] Э.Э. Годик. Автореф. докт. дис. (М., 1980).
- [8] В.М. Абакумов, В.И. Перель, И.Н. Яссиевич. ФТП, 12, 3 (1978).
- [9] R. Chen, Y. Kirsh. Analysis of thermally stimulated processes (Pergamon, 1981).
- [10] Ю.А. Гурвич, А.Р. Мельников, А.Н. Шестаков, Е.М. Гершензон. Письма ЖЭТФ, 61, 717 (1995).
- [11] Р.А. Смит. Полупроводники (М., Мир, 1982).
- [12] В.Н. Абакумов, П.М. Крещук, И.Н. Яссиевич. ФТП, 12, 264 (1978).
- [13] P.A. Martin, B.G. Streetman, K. Hess. J. Appl. Phys., 52, 7209 (1981).
- [14] Т.М. Лифшиц. ПТЭ, № 1, 10 (1993).

Редактор Т.А. Полянская

Frenkel–Pool effect for boron impurities in silicon in strong heating electric fields

A.M. Kozlov, V.V. Rylkov

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 141120 Fryazino, Russia