Механизм многозначной анизотропии электропроводности двойных гетероструктурных ям и сверхрешеток

© З.С. Грибников

Институт физики полупроводников Национальной академии наук Украины, 252650 Киев, Украина

(Получена 4 июля 1996 г. Принята к печати 8 июля 1996 г.)

Предложен новый механизм многозначной анизотропии продольной электропроводности двухьямных и многоямных гетерструктур на основе многодолинных полупроводников. Механизм основан на предположении о том, что при разогреве электронного газа межьямная термоэлектронная эмиссия через невысокий потенциальный барьер становится доминирующим каналом электронных переходов между ямами и что межъямные переходы с сохранением долины могут быть чаще междолинных. Учетены внутренние электрические напряжения на барьерах, возникающие вследствие различного междолинного перераспределения в ямах.

Многозначная анизотропия электропроводности 1. (МАЭ) (или многозначный эффект Сасаки — МЭС) отчетливее всего проявляется в виде спонтанного нарушения симметрии распределения электронов по эквивалентным долинам многодолинного полупроводника в случае тока, направленного вдоль одной из осей симметрии кристалла. Этот эффект, приводящий к доменной (слоистой) структуре поперечного электрического поля и долинных концентраций [1], достаточно подробно исследован как теоретически, так и в экспериментах с объемными образцами n-Si (см. монографию [2] и более поздние обзоры [3,4]). "Обычным" механизмом МАЭ является быстрое возрастание вероятности междолинного перехода с испусканием междолинного фонона при низких температурах кристаллической решетки по мере роста разогрева электронного газа в долине.

При переходе от объемных образцов к слоистым структурам с потенциальными барьерами, разделяющими проводящие каналы, доменная структура поперечного электрического поля должна претерпеть заметные изменения вследствие полевого эффекта на барьерах [5].

Здесь мы впервые излагаем новый механизм МАЭ, отличный от обычного фононного, и присущий только слоистым гетероструктурам с двумя или более токовыми каналами, разделенными потенциальными барьерами. В объемных образцах предлагаемый механизм невозможен. Суть этого механизма покажем на простейшем примере двойной симметричной гетероструктурной ямы (рис. 1), токопроводящие каналы (ямы) которой (равно как и разделяющий их барьер) выполнены из материалов, электронный спектр которых может быть описан с помощью двухдолинной модели.

Предположим, что в каждой из двух ям a и b электроны каждой из двух долин 1 и 2 образуют по одному одинаковому уровню ε_I (наиболее низкие подзоны). (Ввиду предполагаемой слабости туннельной связи между ямами расщеплением этих уровней пренебрегаем). Предположим далее, что вышележащие уровни квантования ε_{II} , ε_{III} и т.д. лежат на высоте барьера или выше и являются, таким образом, коллективными. Поскольку туннельную связь между ямами в самых низ-

ких подзонах предполагаем слабой, в интересующем нас диапазоне продольных электрических полей доминирует иной механизм межъямных переходов электронов — термоэлектронная эмиссия из ямы в яму. В процессе такой эмиссии электрон, например, из долины 1 в яме a (т. е. из состояния a1) должен разогреться до такой энергии в своей яме, чтобы в результате рассеяния перейти в одну из более высоких подзон (сохраняя при этом свою долинную принадлежность) и затем снова рассеяться на самый низкий уровень квантования, но уже в яме b (т. е. перейти в состояние b1), где и охладиться.

Далее мы предполагаем, что межъямный термоэлектронный переход с сохранением долинной принадлежности в рассматриваемом диапазоне полей является существенно более вероятным процессом, чем междолинное рассеяние электронов с сохранением их ямной принадлежности. Это возможно, если подавлено упругое междолинное рассеяние (на примесях или на флуктуациях состава сплава), а испускание междолинных фононов несущественно, т.е. температура мала, а высота термоэлектрического межъямного барьра $\varepsilon_{ab} = \varepsilon_{II} - \varepsilon_{I}$ заметно меньше энергии $\hbar\omega_{M}$ междолинного фонона

$$\varepsilon_{ab} < \hbar \omega_M.$$
 (1)

В равновесии имеет место исходно однородное распределение носителей по долинам и ямам, т.е. $n_{a1} = n_{a2} = n_{b1} = n_{b2} = n_0$. При этом приложенное электрическое поле $E_x = E$ направлено вдоль оси x, а поперечная его составляющая отсутствует: $E_y = 0$. В силу анизотропии долин 1 и 2 в каждой из них имеются поперечные составляющие потоков $j_{ya1} = j_{yb1} = -j_{ya2} = -j_{yb2}$, не приводящие к среднему нагреву или охлаждению носителей в долинах в силу отсутствия составляющей поля E_y .

Предположим теперь, что в яме *а* возникло флуктуативное междолинное перераспределение носителей с появлением положительной добавки δn_{a1} и отрицательной добавки $\delta n_{a2} = -\delta n_{a1}$. В результате проводимость ямы *а* приобретет анизотропию, так что в ней возникнет малое поперечное поле δE_a , направленное таким образом, что электроны типа *a*1 в целом охлаждаются, а электроны

Рис. 1. Двойная гетероструктурная яма (слева) и схема расположения долин в двумерном *p*-пространстве самых низких подзон размерного квантования (справа).

типа *a*2 греются. Поскольку в яме *b* такого поля нет, термоэмиссионное равновесие нарушается и возникает избыточный переход электронов типа *a*2 в состояние *b*2, а также переход электронов типа *b*1 в охлажденное состояние *a*1. Теперь и в яме *b* возникает электрическое поле δE_b обратного знака по сравнению с полем δE_a , способствующее добавочному нагреву электронов типа *b*1 и охлаждению электронов типа *b*2, т. е. (с учетом процесса термоэлектронной эмиссии в яму *a*) усиливающее исходную концентрационную флуктуацию в яме 1.

В результате при преобладании описанных выше диссипативных эффектов, усиливающих флуктуацию, над многими иными, подавляющими ее, возникает одно из двух стационарных состояний, схематически изображенных в правой части рис. 2. Такое состояние характеризуется наличием поперечных электрических полей $E_y^{(a)}$ и $E_y^{(b)}$, равных по величине и противоположно направленных в ямах *a* и *b*, а также различным заполнением долин в ямах, причем асимметрия заполнения также одинакова по величине, но различна по знаку: $n_{a1} - n_{a2} = n_{b1} - n_{b2}$ (однако $n_{a1} + n_{b1} = n_{a2} + n_{b2}$). Для сравнения в левой части рис. 2 показаны состояния с нарушенной симметрией в объемном материале, возникающие при реализации обычной схемы МАЭ.

2. Изображенная на рис. 2 схематическая картина МАЭ в двойной яме в чистом виде нереализуема, поскольку наличие полей разного знака $E_y^{(a)}$ и $E_y^{(b)}$ приводит к появлению электрического напряжения $V(y) = -\int_0^y [E_y^{(a)}(y') - E_y^{(b)}(y')] dy'$ на потенциальном барьере, разделяющем ямы. Это напряжение имеет своими следствиями два эффекта, радикально изменяющие описанную картину.

Во-первых, происходит перезарядка ям, при которой

$$e(n_a - n_b) = 2 \int_{0}^{V(y)} C(V') dV', \qquad (2)$$

где $n_a = n_{a1} + n_{a2}$, $n_b = n_{b1} + n_{b2}$, C(V) — эффективная дифференциальная межъямная емкость. Во-вторых, изменяется форма потенциального барьера и ям. Теперь мы не можем ввести единый самый низкий дважды вырожденный уровень ввиду появившейся сильной асимметрии и должны рассматривать разные уровни в ямах и вводить две различные энергии термоэлектронной эмиссии. Таким образом, вероятности термоэлектронной эмиссии из ямы a в яму b и обратно разнятся не только ввиду различного разогрева электронов в этих ямах, но и ввиду наличия напряжения V(y).

Совокупное действие обоих эффектов приводит к тому, что область пространства, где имеется поперечное поле $E_y^{(a,b)}$ и соответствующее междолинное перераспределение электронов в ямах, ограничивается в размерах и разделяет собой две обширных области, в которых $E_y^{(a,b)} = 0$, однако между ямами имеется напряжение $V(\infty)$ и $V(-\infty) = -V(\infty)$. Наличие этих напряжений сопряжено, согласно (2), с асимметричным заполнением ям: $(n_a - n_b)|_{y=\infty} = -(n_a - n_b)|_{y=-\infty}$. Фактически эти обширные области и играют роль слоев — доменов при рассматриваемом механизме МАЭ, тогда как разделяющие их сравнительно узкие слои с поперечными полями и междолинным перезаселением электронов служат доменными стенками. Таким образом, МАЭ имеет место именно в этих стенках.

В таблице сведены качественные особенности доменов и доменных стенок при обычной МАЭ в объемных образцах и в рассмотренном здесь случае двойной ямы.

3. Запишем упрощенную (феноменологическую) систему уравнений, позволяющую качественно описать рассматриваемый эффект. Эти уравнения развивают и обобщают аналогичные уравнения для обычного эффекта МАЭ (их жизнеспособность была впоследствии подтверждена множеством численных расчетов). Они включают в себя уравнение (2) и 4 уравнения непрерывности для

Рис. 2. Схематическая картина МАЭ в "обычном" объемном варианте (слева) и в предлагаемом варианте для двойной ямы (справа).

 $U(z),\varepsilon$

Объемный образец с обычным	Двойная яма
(фононным) механизмом МАЭ	с термоэлектронным механизмом МАЭ
Свойства доменов	
Постоянное поперечное поле,	Отсутствие поперечных полей, постоянное напряжение на барьере,
междолинное перезаселение,	отсутствие междолинного перезаселения, межъямное перезаселение,
анизотропная проводимость	изотропная проводимость
Свойства двойных стенок	
Поперечное поле проходит через нуль,	Поперечные поля в ямах, напряжение на барьере проходит через нуль,
междолинное перезаселение проходит через нуль,	междолинные перезаселения в ямах,
	межъямное перезаселение проходит через нуль,
доменные стенки поляризованы:	доменные стенки не поляризованы
тонкие и толстые (прямые и обратные)	
Соотношения симметрии	
$E_y(y) = -E_y(-y)$	$E_{y}^{(a)}(y) = -E_{y}^{(b)}(-y), \ V(y) = -V(-y)$
$n_1(y) = n_2(-y)$	$n_a(y) = n_b(-y),$
	$n_{a1}(y) = n_{b2}(-y),$
	$n_{a2}(y) = n_{b1}(-y)$

всех четырех групп электронов, введенных выше:

$$\frac{\partial n_{\gamma k}}{\partial t} + \frac{\partial j_{\gamma k}}{\partial y} = -n_{\gamma k} \big[\nu(F_{\gamma k}, V_{\gamma \gamma'}) + \nu_0(F_{\gamma k}) \big] + n_{\gamma' k} \nu(F_{\gamma' k}, V_{\gamma' \gamma}) + n_{\gamma k'} \nu_0(F_{\gamma k'}), \quad (3)$$

где $\gamma = a, b, \ k = 1, 2, \ \gamma' \neq \gamma, \ k' \neq k, \ V_{ab} = -V,$ а

$$F_{\gamma k} = e\mu E^2 \left[1 + \zeta_{\gamma}^2 - 2A\zeta_{\gamma} (-1)^k \right], \tag{4}$$

где $\zeta_{\gamma} = E_y^{(\gamma)}/E.$

Здесь принято, что составляющие тензоров подвижности в долинах, не зависящие, по предположению, от разогрева, есть $\mu_{xx}^k = \mu_{yy}^k = \mu; \ \mu_{xy}^k = \mu_{yx}^k = -A\mu(-1)^k$, и считается, что разогревная зависимость вероятностей $\nu(F_{\gamma k}, V_{\gamma \gamma'})$ и $\nu_0(F_{\gamma k})$ может быть гораздо более существенной. Введенные в (3) вероятности (обратные времена) междолинного рассеяния $\nu_0(F_{\gamma k})$ предполагаются функциями только некоторых эффективных мощностей (на один электрон) $F_{\gamma k}$, даваемых формулой (4) (в полной аналогии с обычной теорией МЭС [2]), а вероятности межьямного термоэлектронного перехода $\nu(F_{\gamma k}, V_{\gamma \gamma'})$ зависят также и от напряжения $\pm V$ на потенциальном барьере. Потоки электронов $j_{\gamma k}$ в унаправлении есть

$$j_{\gamma k} = -D \frac{\partial n_{\gamma k}}{\partial y} - \mu E n_{\gamma k} [\zeta_{\gamma} - A(-1)^{k}].$$
 (5)

Наконец, предполагается выполненным условие квазинейтральности в виде

$$\sum_{\gamma=a,\,k=1}^{b,\,2} n_{\gamma k} = 4n_0,\tag{6}$$

Физика и техника полупроводников, 1997, том 31, № 5

из которого (а также из уравнений (3) с учетом (5)) следует условие

$$n_a \zeta_a + n_b \zeta_b + A(n_{a1} - n_{a2} + n_{b1} - n_{b2}) = 0, \quad (7)$$

причем нуль в правой части (7) отвечает предположению о холловской конфигурации образца в *ху*-плоскости.

Решение системы (2)–(6) выходит за рамки данной работы. Здесь мы ограничимся констатацией только нескольких ее простейших следствий.

а) При всех значениях *E* существует тривиальное решение $n_{\gamma k} = n_0$, $\zeta_a = \zeta_b = 0$, $F_{\gamma k} = e\mu E^2$, V = 0.

б) Рассматриваемая система описывает обычную МАЭ:

$$n_{a1} = n_{b1} = n_1; \quad n_{a2} = n_{b2} = n_2 \neq n_1;$$

 $\zeta_a = \zeta_b = \zeta \neq 0; \quad V = 0.$ (8)

При этом $F_{a1} = F_{b1} = F_1 \neq F_{a2} = F_{b2} = F_2.$

Возможность существования решений (8) не означает их обязательности. Они имеют место только в некотором диапазоне электрических полей $E \in (E_l, E_h)$ при достаточно низких температурах, когда обеспечивается достаточно быстрый рост $\nu_0(F)$ с F. Решения в доменных стенках зависят от того, совпадает ли направление полевого потока основных носителей в домене (фигурирующего в формуле (5)) с направлением их диффузионного потока или же противоположно [1]. В результате мы имеем два типа доменных стенок, чередующихся друг с другом: толстые стенки, где эти направления совпадают с обеих сторон, и тонкие стенки, в которых эти потоки по обе стороны антипараллельны.

в) Имеются решения с симметрийными свойствами:

$$n_{a1}(y) = n_{b2}(-y); \quad n_{a2}(y) = n_{b1}(-y); \quad n_{a}(y) = n_{b}(-y);$$

$$\zeta_{a}(y) = -\zeta_{b}(-y); \quad V(y) = -V(-y).$$
(9)

Эти решения как раз и есть те новые решения, существование которых обусловлено достаточно быстрым возрастанием $\nu_0(F, V)$ с ростом *F*. Эти решения совпадают с показанными на рис. 2 (в правой его части) только в точке y = 0, которую следует считать центром доменной стенки. Отметим, что в данном случае нет той поляризации доменных стенок, которая имеется в случае обычного объемного эффекта, поскольку в этих стенках не происходит резкого изменения концентраций $n_{\gamma k}$, а значения полей $E_y^{(a, b)}$ не проходят через нуль (и наоборот, близки к своим максимальным значениям).

В доменах, разделенных этой стенкой, имеет место насыщение напряжений на барьере до значений $V_s = V(\infty)$ и $-V_s = V(-\infty)$; при этом насыщаются также концентрации: $n_{as} = n_a(\infty) = n_b(-\infty)$ и $n_{bs} = n_b(\infty) = n_a(-\infty)$, а поля $E_y^{(a)}$ и $E_y^{(b)}$ стремятся к 0. Вместе с полями исчезает и междолинное перераспределение в каждой из ям. Насыщенное значение напряжения V_s определяется из уравнений (2), (6), а также следующего из (3) уравнения

$$n_{as}\nu(V_s) = n_{bs}\nu(-V_s), \qquad (10)$$

где $u(\pm V_s) = \nu(e\mu E^2, \pm V_s)$. Из них мы имеем

$$2\int_{0}^{V_{s}} C(V)dV = 2en_{0}\frac{\nu(-V_{s}) - \nu(V_{s})}{\nu(-V_{s}) + \nu(V_{s})},$$
 (11)

$$n_{as} = 4n_0 \frac{\nu(-V_s)}{\nu(-V_s) + \nu(V_s)},$$
(12)

$$n_{bs} = 4n_0 \frac{\nu(V_s)}{\nu(-V_s) + \nu(V_s)}.$$
 (13)

Нетрудно убедиться, что для существования нетривиальных решений уравнения (11) требуется достаточно резкая зависимость $\nu(V_s)$. В противном случае единственное доменное решение есть $V_s = 0$. При весьма резкой зависимости $\nu(V_s)$ мы получаем полный переход электронов в одну из ям за счет полного опустошения другой.

Наряду со стенками, в которых реализуются поля, например в последовательности $E_y^{(a)} > 0$, $E_y^{(b)} < 0$, возможны аналогичные стенки с полями противоположных знаков. Чередование этих двух типов стенок обеспечивает существование многодоменных (многослойных) структур с доменами различной протяженности. В связи с этим возникают проблемы периодичности, устойчивости, пиннинга, хаоса и т.п.

4. Выполнение условия (1) отодвигает область существования в рассматриваемых структурах обычного МЭС в сторону более сильных полей. При этом домены с межъямным напряжением и межъямной перезарядкой должны быть неустойчивыми к междолинному перераспределению по фононному механизму. Возникновение добавочного перераспределения в зависимости от сочетания параметров может как полностью разрушить структуру, возникшую в слабополевой области, так и вписаться в нее (с образованием гибридной структуры).

Рис. 3. Возможные варианты межьямного перезаселения в многоямной гетероструктуре: слева — симметричное перезаселение, справа — перезаселение посредством спаривания.

До сих пор мы рассматривали только двухъямные структуры. Аналогичные эффекты должны также возникать и в многоямных периодических структурах. При этом ближайшим аналогом двухъямной проблемы были бы структуры, в которых ямы с четным номером могли бы быть уподоблены яме a, а ямы с нечетным номером — яме b (рис. 3, a). Однако кроме структуры ... bababa ... вполне возможна и структура ... baabbaabba ... (рис. 3, b). В этой последней значительно легче развязывается положение стенок, соответствующих одной паре слоев, и, следовательно, существенно обогащается коллекция возможных доменных структур, что облегчает переход к хаосу.

Наиболее очевидными материальными системами, в которых следует искать описанные выше эффекты, являются гетероструктуры Si/Si_{1-x}Ge_x и Ge/Si_xGe_{1-x}. Рассмотрим первую из них, выращенную на подложке Si (100).

Как известно, в этом случае основное изменение ширины щели происходит за счет разрывов в валентной зоне. Однако согласно оценкам [6] в широком диапазоне значений x (0.2 ÷ 0.5) мы все же имеем дело с гетероструктурой 1-го типа, т.е. слои Si_{1-x}Ge_x образуют потенциальные ямы также и в электронной зоне с величиной разрыва порядка 0.02 эВ, причем деформация этих слоев такова, что в указанных ямах существуют только две пары Δ -долин ([010] и [001]), а долина [100] существенно приподнята. Таким образом, здесь реализуется зонная структура, оптимальная в смысле рассматриваемого эффекта. К сожалению, неизбежное сплавное рассеяние в Si_{1-x}Ge_{<math>x}-ямах может существенно увеличить ν_0 и ликвидировать ожидаемый эффект.</sub>

В этом смысле заметны преимущества структуры Ge/Si_xGe_{1-x} на Ge-подложке (110) с Ge-ямами. При $x = 0.02 \div 0.03$ в этих структурах также нетрудно получить барьеры со значениями $\varepsilon_{ab} \simeq 0.02$ эВ. При этом сплавное рассеяние переносится в барьеры, в которых время нахождения электрона (равное времени баллистического пролета между двумя упругими рассеяниями) мало. Заметим, что структуры на Ge-подложках в последние годы привлекают повышенное внимание (см., например, [7–9]).

Хотя экспериментальное наблюдение эффекта в двойных и многократно повторяющихся ямах предусматривает охлаждение до температуры жидкого гелия или около нее, здесь (в отличие от объемного Si) не происходит вымораживания носителей и диэлектризации образцов, поскольку при селективном легировании барьеров электроны будут всегда заполнять ямы (при условии, что энергия ионизации примеси в барьере достаточно мала, как это и имеет место в структуре Ge/Si_xGe_{1-x} при малых x).

Автор благодарит В.Л. Борблика за неоценимую помощь в подготовке рукописи.

Работа выполнена при поддержке Фонда фундаментальных исследований Государственного комитета по науке и технике Украины, грант № 2.3/122 ("Простір").

Список литературы

- [1] З.С. Грибников, В.В. Митин. Письма ЖЭТФ, 14, 272 (1971).
- [2] М. Аше, З.С. Грибников, В.В. Митин, О.Г. Сарбей. Горячие электроны в многодолинных полупроводниках (Киев, Наук. думка, 1982).
- [3] M. Asche. In: *Hot Electron Transport in Semiconductors*, ed. by L. Reggiani (Springer Verlag, Berlin, 1985) p. 149.
- [4] M. Asche. Sol. St. Electron., 32, 1633 (1989).
- [5] З.С. Грибников, А.Н. Коршак. ФТП, 28, 963 (1994).
- [6] R. People, J.C. Bean. Appl. Phys. Lett., 48, 538 (1986).
- [7] В.И. Гавриленко, И.Н. Козлов, О.А. Кузнецов, М.Д. Молдавская, В.В. Никаноров, Л.К. Орлов, А.Л. Чернов. Письма ЖЭТФ, **59**, 348 (1994).
- [8] V.J. Aleshkin, N.A. Bekin, I.V. Erofeeva, V.I. Gavrilenko, Z.F. Krasil'nik, O.A. Kuznetsov, M.D. Moldavskaya, V.V. Nikonorov, V.M. Tsvetkov. Lithuan. J. Phys., 35, 368 (1995).
- [9] E. Murukami, K. Nakagava, A. Nishida, M. Miyao. IEEE Electron. Dev. Lett., 12, 71 (1991).

Редактор Л.В. Шаронова

Mechanism of multi-valued anisotropy of conductivity of double heterostructure wells and superlattices

Z.S. Gribnikov

Institute of Semiconductor Physics, Ukrainian Academy of Sciences, 252650 Kiev, the Ukraine

Fax: (044)265-83-42 (Gribnikov) E-mail: zinovi@lab2.kiev.ua (Gribnikov)